
1

PIRATE: A Blockchain-based Secure Framework of
Distributed Machine Learning in 5G Networks

Sicong Zhou, Huawei Huang, Wuhui Chen, Pan Zhou, Zibin Zheng, Song Guo

Abstract—In the fifth-generation (5G) networks and the be-
yond, communication latency and network bandwidth will be
no more bottleneck to mobile users. Thus, almost every mobile
device can participate in the distributed learning. That is, the
availability issue of distributed learning can be eliminated. How-
ever, the model safety will become a challenge. This is because the
distributed learning system is prone to suffering from byzantine
attacks during the stages of updating model parameters and
aggregating gradients amongst multiple learning participants.
Therefore, to provide the byzantine-resilience for distributed
learning in 5G era, this article proposes a secure computing
framework based on the sharding-technique of blockchain,
namely PIRATE. To prove the feasibility of the proposed PI-
RATE, we implemented a prototype. A case-study shows how
the proposed PIRATE contributes to the distributed learning.
Finally, we also envision some open issues and challenges based
on the proposed byzantine-resilient learning framework.

I. INTRODUCTION

Machine learning has spawned a lot of useful applications,
such as computer vision, and natural language processing,
etc. However, the parties who benefit from the technology
are mostly large organizations, e.g., commercial companies
and research institutes. Individuals with limited computing-
resource cannot take part in machine learning tasks.

In fact, the combined power of individuals has been much
underestimated. Taking these advantages into account, dis-
tributed learning [1] enables individual devices to learn col-
laboratively.

Generally, factors that affect an ideal distributed learning
are included as follows:

• High availability: any device can perform learning any-
time.

• High scalability: the learning framework should support
high concurrency, high communication efficiency and low
storage complexity.

• Decentralization: the intervention of a centralized third-
party is minimum.

• Byzantine-resilient model safety: the future distributed
learning should ensure byzantine-resiliency [2], which
indicates that the distributed learning can endure arbitrary
attacks on learning convergence.

S. Zhou, H. Huang, W. Chen and Z. Zheng are with the School
of Data and Computer Science, Sun Yat-Sen University, China. Email:
huanghw28@mail.sysu.edu.cn

P. Zhou is with School of Electrical Information and Communication
Engineering, Huazhong University of Science & Technology, Wuhan, 430074,
China.

S. Guo is with the Department of Computing, the Hong Kong Polytechnic
University. Email: song.guo@polyu.edu.hk

Communication latency and bandwidth are still viewed
as the bottleneck of distributed machine learning [3]. This
situation makes distributed learning highly unavailable for the
majority.With significantly improved network conditions, 5G
technologies enable high availability.

As do all distributed systems, the learning system is prone to
byzantine attacks [2], especially when the availability is high.
Therefore, more sophisticated approaches that can ensure the
byzantine-resilience are required.

Recently, byzantine-resilient machine learning under mas-
ter/slave settings has gained much attention [4]–[6]. In a
byzantine-resilient distributed-learning task, two things are
risk-prone: 1) gradient aggregation, and 2) model parameters.

Conventionally, the byzantine-resilient distributed-learning
tasks are conducted under centralized settings, in which the
byzantine-tolerant components rely on a globally trusted third-
party as the parameter server. The problem is that the
workload-handling capacity of such centralized parameter
server is usually a bottleneck while performing the distributed
learning. Moreover, to provide reliable services against the
vulnerability of single-point-of-failure (SPOF), the redundant
deployment of resources is entailed at the centralized third-
party. Therefore, the centralized byzantine-resilient learning
induces a high operational-expenditure (OPEX).

To achieve high availability while fulfilling the requirement
of OPEX-efficiency and byzantine-resiliency, the distributed
learning system would ideally be decentralized. However, to
the best of our knowledge, the byzantine-resilient learning with
decentralized configuration has not been well studied.

To this end, this paper proposes a sharding-based blockchain
framework named PIRATE, for byzantine-resilient distributed-
learning under the decentralized 5G environment to protect
learning convergence. Decentralized convergence-security, and
trusted credit feedback for candidate management are the key
features of PIRATE.

II. PRELIMINARIES OF DISTRIBUTED MACHINE
LEARNING IN 5G NETWORKS

A. Consensus Protocols for Decentralized Learning in 5G

To achieve global agreement within a decentralized setting,
a byzantine-tolerant consensus protocol for state machine
replication (SMR) is needed [2]. The consensus protocol
should ensure that honest nodes can reach agreement on the
order and the correctness of model updates, even when a
certain amount of byzantine effort exists. In this section, we
first briefly review the existing byzantine tolerant consensus
protocols towards SMR, and then analyze what protocol



2

Fig. 1. The proposed PIRATE framework has two critical components: 1) permission control, and 2) blockchain-based learning committees for distributed
SGD (D-SGD). Gradient aggregations and model parameters are protected by Hotstuff blockchain consensus protocol. Meanwhile, the permission control
centre determines the joining and leaving of candidates.

is applicable for decentralized learning in the 5G era. For
brevity, we call the byzantine-tolerant consensus protocol the
consensus protocol in the remainder of this paper.

Consensus protocols can be categorized into 2 types: the
competition-based and the communication-based. The leader
of competition-based consensus, e.g., the Proof of Work (PoW)
adopted by bitcoin [7], needs to earn his leadership through a
“fair” competition. Communication-based consensus protocols
(e.g., Hotstuff [8]) select leaders through a deterministic way,
or based on an unbiased randomness generated collaboratively.

In the context of blockchains, for competition-based con-
sensus protocols, blocks are appended on the chain before
consensus while the communication-based protocols append
blocks thereafter. For competition-based methods, larger
scales inevitably incur higher chance of forking. Plagued by
the byproduct, competition-based methods struggle to achieve
a high scalability.

While communication-based consensus protocols have no
concern of forks, they require multiple rounds of communi-
cation to reach agreement. The high communication overhead
also hurts the scalability of communication-based protocols.

Sharding-based consensus protocols [9] can achieve scal-
able consensus in the permissionless blockchain. They benefit
from the instant finality of the communication-based methods,
and permissionless resiliency of the competition-based meth-
ods.

In 5G networks, we need a consensus protocol that is
available for a large scale of participants. An ideal consensus
protocol should be scalable and permissionless. Sharding-
based protocols make full use of the integrated resources
by splitting a workload and allocating tasks among multiple
committees. Such scalable strategy can fit perfectly in dis-
tributed learning. However, permissionless distributed-learning
is challenging due to the volatile states of participants. Thus,
a consistent assessment of training-reliability is required for
the learning system task to function efficiently. Accordingly,

we adopt a permissioned version of sharding-based consensus
protocol in our proposed framework.

B. Configurations of Distributed Machine Learning
Machine learning problems mostly rely on some optimiza-

tion problems. In order to orchestrate a distributed optimiza-
tion, as shown in Fig. 1, computing nodes need to carry out
the following steps. First, each node computes local gradients.
Then, nodes communicate with aggregator(s) to get a globally
aggregated gradient for model update. Based on how they
communicate, two typical styles of configuration have been
proposed:

Master/slave style: A centralized parameter server aggre-
gates gradients and sends the aggregated result to each com-
puting node.

Decentralized style: All nodes are aggregators. In an Allre-
duce manner, nodes communicate with neighbors to exchange
gradients.

We then discuss the superiority of decentralized style:
• Communication efficiency. A recent work [3] demon-

strated that the decentralized settings can better exploit
the bandwidth resource, avoid traffic jams and share
workloads among peers than the centralized master/slave
settings.

• Cost efficiency. When the scale of participation grows
substantially, no single party should be responsible for
maintaining the system. Analogous to the situation of
cloud netdisk services nowadays, if a service provider
plays such a dominant role, the OPEX cost of the cen-
tralized system eventually transfer to clients. As a feasible
solution, service providers enforce clients to choose be-
tween low quality of service and expensive membership
fee. This is an opposite of win-win for providers and
clients, provided that there are better solutions.

• Reliability. The centralized design of master/lave settings
suffer from SPOF problem. Once the centralized server



3

is overloaded or under attack, the whole system ceases
to function. Thus, the communication burdens and the
attack risks on one single server impair the reliability of
the system.

III. STATE-OF-THE-ART STUDIES OF
BYZANTINE-RESILIENT MACHINE LEARNING

A. Byzantine-Resilient Machine Learning

As the scale of participants grows, the behaviors of com-
puting nodes become more unpredictable. The distributed
stochastic gradient descent (D-SGD) [10] framework should
tolerate byzantine attacks, i.e., arbitrary malicious actions
to prevent convergence, such as sending harmful gradients
and corrupting training models as shown in Fig. 2. Current
studies on byzantine-resilient machine learning mostly focus
on protecting gradient aggregation. However, the parameters of
training models owned by each data trainer are also vulnerable.
We analyze existing frameworks that can protect both, and
elaborate the protection of gradient aggregation in the next
section.

A blockchain-based method, LearningChain, was proposed
by Chen et al. [11], which is able to simultaneously protect
gradient aggregations and model parameters, by storing them
together on-chain. Exploiting the traceability of blockchain, er-
roneous global parameters can be rolled back to its unfalsified
state. Historical parameter records cannot be falsified due to
the tamper-proof characteristic of blockchain. They proposed
“l-nearest gradients aggregation” to ensure that if byzantine
computing nodes yield local gradients to prevent convergence
of the learning algorithms, their effort would be mitigated.
However, LearningChain still utilizes a master/slave setting
for D-SGD where the parameter server is elected by PoW
competition. In addition, the on-chain data could be potentially
oversized, because all nodes would have to store all the
historical model parameters and gradients. Such architecture
is prone significant traffic congestion and substantial storage
overhead.

In terms of reliability, rollbacks can possibly fail if two
consecutive byzantine leaders collude. The essential problem
is that, the model update is examined by only one leader when
a proposal is submitted. In contrast, our proposed framework
adopts a more decentralized setting, in which all nodes can
naturally participate in validating the model updates, and every
node maintains its own training model.

B. Byzantine Protection on Gradients

Before updating training models, computing nodes need to
aggregate their local gradients. Aggregation solutions of sim-
ple linear combinations (e.g., averaging [12]) cannot tolerate
one byzantine worker [4]. Thus, byzantine protection on gradi-
ents aggregation has gained much growing attention. Basically,
the existing byzantine-based approaches can be classified into
2 categories: the tolerance-based and the detection-based.

Blanchard et al. [4] proposed a byzantine tolerant method
called Krum. Instead of using a simple linear combination,
Krum precludes gradients too far away from the majority

and chooses one local gradient based on a spatial score.
Experiments show that even with 33% of omniscient byzantine
workers, the error rate is almost the same as that of 0%.

The tolerant approach l-nearest gradients proposed by Chen
et al. [11] cannot guarantee safety against omniscient attacks.
The aggregation solution is to aggregate l gradients closest,
based on their cosine distances, to the sum of the received
gradients. If an omniscient attacker manages to acquire all
local gradients for other workers in time, the byzantine worker
can yield a local gradient that changes the global aggregation
arbitrarily [4].

One byzantine-detection method proposed by Li et al. [6]
is designed for federated learning (FL). Existing byzantine-
tolerant aggregation methods are mostly inefficient due to the
non-identically and independently distributed training data.
Experiments show that their detection-based method has a
better performance than tolerance-based methods in FL. In
their algorithm, a credit score was assigned by a pre-trained
anomaly detection model to each local gradient. Since the
weight of the local gradient was determined by the credit
score, the weighted sum aggregation can filter out the byzan-
tine local gradients.

Apart from detection methods, another machine learning
method was proposed by Ji et al. [13] to learn the gradient
aggregation. Different from the deterministic aggregation so-
lution, they model the aggregation as a learning problem.

Tolerance-based methods are mostly designed under an in-
dependent identically distributed (i.i.d) assumption. Therefore,
in the settings of FL where data is non-i.i.d, most tolerance-
based methods do not perform well. However, tolerance-based
methods have the benefit of simplicity that do not require
additional training.

As shown in Table. I, we compare the performance of
different protection approaches for gradient-aggregation under
the normal setting and the FL setting.

C. Risks of Decentralization

In a decentralized scheme, every node has a greater impact
on the global aggregation than a centralized scheme. As shown
in Fig. 2, the existing protection methods are not applicable
to the decentralized settings because of the following reasons.

• Attacks on partial aggregation are detrimental. Every
node aggregates a partial aggregation provided by an-
other node. For byzantine nodes, they have more attack
patterns, such as sending falsified partial aggregation
results or sending nothing to stall the aggregation process.
Thus, without a quorum of validators, partial aggregation
process cannot be trusted.

• Anomaly detection [6] would be challenging. Credit
scores cannot be trusted without proper validation mech-
anisms.

• Synchronization of model parameters could be a problem.
Every node needs to maintain a local training model.
Once contaminated by attackers, computing nodes will
have no actual contribution to the holistic learning task.

As a solution, blockchain as a decentralized SMR system,
can provide quorums of validators and practical synchroniza-



4

TABLE I
GRADIENT PROTECTION METHODS

Method types The tolerance-based The detection-based The learning-based

Representative studies Krum [4] l-nearest Anomaly Detection [6] Learning to learn [13]gradients [11]
Resiliency under 30% attack High Medium Unknown High
Resiliency under 30% attack (FL) Low Unknown High Unknown
Resiliency under majority attack Low Medium Unknown High
Resiliency under majority attack (FL) Low Unknown High Unknown
Computation complexity O(n2) O(n) O(n) Model-related
Other functions except aggregation None Autoencoder training Aggregator training

tion mechanism to achieve byzantine-resiliency in decentral-
ized learning.

IV. OUR PROPOSAL - PIRATE: A MACHINE LEARNING
FRAMEWORK BASED ON SHARDING TECHNIQUE

A. Overview of PIRATE

Generally, we propose a framework of blockchain-based
protection for the distributed machine learning named PI-
RATE, targeted for the convergence risks brought by decen-
tralized D-SGD. PIRATE consists of two major parts, i.e.,
a permission control center and learning committees. The
permission control center provides reliability assessment to
candidates and assigns candidates into learning committees.
Meanwhile, learning committees collaborate to solve a de-
centralized D-SGD problem with additional verification from
blockchains and anomaly detection. As a result, malicious
nodes are replaced and their harmful gradients are filtered.

B. Permission Control

In a distributed learning system with high availability, reli-
ability assessment is essential, especially for mobile devices.
Allowing devices in bad states to participate learning tasks
would slow down the entire learning process. Thus, real-time
reliability assessment and permission control are needed.

We propose a centralized solution for permission control.
Fig. 1 depicts the permission control of PIRATE. Before
actually contributing to the global learning task, all candidates
are assessed by a permission control center based on their
computation ability, network condition, join/leave prospect and
historical credit scores. Accordingly the permission control
center determines whether a candidate can join a learning task
and the workload to assign. If granted permission, candidates
are to replace nodes with low accumulated credit scores
during reconfiguration. During training, validated credit scores
generated by committees are transmitted to the permission
control center.

C. Sharding-based Blockchain Protection towards Decentral-
ized Distributed-Learning

We propose a sharding-based blockchain mechanism for the
protection of decentralized distributed-learning. We randomly
split the computing nodes into multiple committees, in which

Fig. 2. While adopting the Ring Allreduce1 mechanism, malicious attackers
can perform attacking from both inside and outside. 1 Attackers from the
outside can contaminate training models in target nodes. 2 The outside
attackers can also attack partial gradient-aggregation. 3 Byzantine computing
nodes can send harmful aggregations that damage the convergence of learning
tasks.

partial aggregations are agreed. No longer centralized, the
burden of aggregation workloads is mitigated.

Let n denote the total number of computing nodes, c denote
the size of a committee. We then discuss the key actions of
the learning committees.

Random committee construction. All nodes would be
assigned a random identity by the permission control center.
According to the identities, committees of size c are formed.
Every committee member knows the identity of all honest
peers in their committee and their neighbor committees.

Intra-committee consensus. Every committee maintains a
separate blockchain with Hotstuff [8] to reach consensus on
local aggregations, training models and credit scores. With an
honest majority of members having agreed and partially signed
(threshold signature) on the data, the data is tamper-proof.

Global consensus. In a committee-wise Ring Allreduce1

manner, committees communicate locally-agreed aggregations
and their threshold signatures with their neighbor committees.
Since committee members know all honest members in their
neighbor committees, by checking whether an aggregation is
signed by an honest majority, committee members can verify
the aggregation from neighbors. With 2(n/c − 1) consensus
steps, every node would have a globally agreed aggregation,

1https://github.com/baidu-research/baidu-allreduce



5

Fig. 3. We define the process of finishing a partial aggregation a step, the process of finishing a model update an iteration. A consensus step (CS) has 4
phases, each driven by leader. The protocol can be pipelined for performance enhancement, ideally executing 1 aggregation each block in average.

completing one iteration.
Reconfiguration. After finishing a learning task, nodes

with low credit scores in every committee are replaced. The
permission control center would consider these nodes as
byzantine nodes and replace them with new nodes. Following
Bounded Cuckoo Rule [9], old and new nodes in a committee
are randomly evicted to some other random committees. The
random eviction rule provides join/leave attack protection
while guaranteeing a same resiliency of 1/3 in each committee.

D. Intra-Committee Consensus

As in Fig. 1, each committee maintains a blockchain to
protect aggregations and training models within the committee.
We adopt Hotstuff [8] as the consensus protocol of the
blockchain. Fig. 3 depicts the intra-committee consensus pro-
cess. We define the process of finishing a partial aggregation
a step, the process of finishing a model update an iteration.

When a local gradient is computed, members take part in
repeated consensus steps. A consensus step (CS) includes:

• Component 1: local gradient selection,
• Component 2: neighbor committee aggregation,
• Component 3: aggregation of Component 1 and Com-

ponent 2.
For component 1, committee members can either collabo-

ratively select c2/n local gradients, or coordinate in a round
robin manner to choose c2/n local gradients.

For component 2, members wait for the leader of the neigh-
bor committee Ci−1 to broadcast the tamper-proof neighbor
aggregation from last step. Since the aggregation is an agreed
result from the neighbor’s last step, members of this committee
Ci can verify the result by checking the threshold signature.
If the leader of Ci−1 chooses to withhold the result from Ci,
members of Ci would send requests to a random member of
Ci−1 for the result.

Finally for component 3, having a neighbor committee
aggregation and a set of local gradients, nodes aggregate
them using the detection-based BFT aggregation [6]. A pre-
trained anomaly detection model would assign a weight to

each proposed gradient according to the anomaly score. Zero
weight would be assigned to a proposed gradient if its anomaly
score surpasses a threshold, thereby harmful gradients that
hinders convergence are “filtered”. Meanwhile, members are
required to validate and store historical credit scores of each
other until a new committee is formed. These verifiable credit
scores are transmitted to the permission control center during
reconfiguration.

After all components being executed, the incumbent leader
broadcast the partial aggregation and a digital digest of training
parameters for members to verify and agree on. Having
sufficient signatures, the leader would broadcast the decided
aggregation in its committee Ci and in the neighbor committee
Ci+1.

With Hotstuff [8] a consensus step requires four phases
of communication, i.e., PREPARE, PRE-COMMIT, COMMIT
and DECIDE. Each phase is driven by a leader issuing a block
containing verifiable threshold signatures.

As shown in Fig. 3, only 1/4 of blocks are generating
aggregations. To address this issue, we can pipeline consensus
steps to achieve a better performance. Each leader would be re-
sponsible for driving four consensus steps in different phases.
In an ideal scenario where no byzantine leader is elected, every
block generates an agreed aggregation in average.

Members are required to store one set (4 sets if pipelined)
of gradients for validation, which is composed of its own local
gradient, aggregation of the corresponding neighbor committee
and an aggregation proposal from the incumbent leader.

E. Committee-wise Ring Allreduce

In PIRATE, we adopot a committee-wise Ring Allreduce
as the decentralized communication scheme. The committee-
wise Ring Allreduce enables verification of aggregation in a
fully decentralized setting. For classic Ring Allreduce, we
refer our readers to baidu-allreduce1. The worker unit of
committee-wise Ring Allreduce is no longer a processing unit,
but an entire committee. Also, instead of segmenting one
single gradient for transmission of each round as classical Ring
Allreduce does, a committee transmits one whole gradient in



6

each round (consensus step) by controlling the selection ratio
n/c2 to 1 (1/4 if pipelined). The selection ratio ensures that
the amount of whole gradients to transfer equals to the number
of committees. After 2(n/c−1) rounds, all local gradients are
aggregated.

F. Security and Complexity Analysis

1) Security Analysis of Convergence Attack: As shown
in Fig. 2, various attack behaviors are considered. Training
models and aggregations are two main targets of attack.

Training models are maintained by all computing nodes.
Since training models are on-chain information, computing
nodes can quickly recover an approved training model once it
is contaminated. With Hotstuff [8], the recovery mechanism
only fails if the committee is composed by over 33% of
byzantine nodes.

Both local gradients and partial aggregations could be
contaminated or falsified within a certain committee, either
by outsiders or malicious participants.

When local gradients are contaminated, they would be
effectively filtered by the gradient anomaly detection if the
percentage of the contaminated gradients is less than 30%
[6]. In terms of partial aggregations within committees, with
each committee running consensus protocol that only approve
aggregations with authenticators (i.e., threshold digital signa-
tures), contaminated aggregations would not be accepted by
committee members. And again, such mechanism only fails if
the committee is composed by over 33% of byzantine nodes.

An authenticated partial aggregation is to be broadcast to
members of the neighbor committee. Similar to the above
mechanisms, passing partial aggregation to neighbors fails if
the committee is composed by over 33% of byzantine nodes.

2) Security Analysis of Take-over Attack: In terms of take-
over attacks, we adopt the Bounded Cuckoo Rule for recon-
figuration, which is proven to keep committees balanced and
honest in [9]. Balanced refers that the number of nodes in the
committee is bounded , and honest refers that the fraction of
byzantine nodes is less than 1/3. Given the two properties, the
reconfiguration mechanism shields the system from take-over
attacks.

3) Computation Overhead: Extra computation cost mainly
comes from generating digital digests and verifying them.
We adopt Hotstuff as the consensus protocol, which has
a complexity of O(n) [8]. Such overhead is insignificant
compared to gradient broadcasting. For instance, generating
a 100 MB Merkle tree with a 3.5GHz processor and PySHA-
3 would roughly takes 1 second, and verifying the tree would
take way less than 1 second [14].

G. Applications

1) Decentralized Federated Learning: In FL, data privacy
are protected with differential privacy mechanisms. In terms of
convergence safety, FL relies on byzantine-resilient centralized
D-SGD algorithms like [6] for protection. However, most of
these algorithms alone cannot provide protection in a decen-
tralized setting. PIRATE solves this problem with blockchains.

Meanwhile, with anomaly detection and consensus mecha-
nisms of PIRATE, verifiable credit scores can be utilized as a
powerful index for client selection, a crucial stage of FL.

2) Big Data Analysis for Consortium Blockchains: Consor-
tium blockchains are widely used in industry organizations for
the benefits of a shared governance. With PIRATE, organiza-
tions can continuously conduct secure big data analysis using
decentralized D-SGD on the shared data. The learnt results are
trustworthy in an environment where learning devices owned
by different organizations do not have to trust one another.
Each organization is required to maintain its own permission
control centre. Utilizing the credit score feedback, each or-
ganization would always have their most reliable devices on
duty.

V. CASE STUDY

We implemented a prototype of PIRATE based on Hotstuff2.
To further evaluate the performance of PIRATE in a large-scale
scenario, we conducted a simulation.

A. Security

To demonstrate feasibility and verification-based security
of PIRATE, we conducted an experiment on the prototype.
As shown in Fig. 4 we experimented on 6 instances, four
of which composes Committee1, and the rests are Neighbor1
and Neighbor2. In a committee-wise Ring Allreduce manner,
Committee1 and its neighbors communicate with verifiable
aggregations. The training process is omitted in the experiment
for simplicity.

In Fig. 4 variables like hqc, b_lock and vheight, we
refer our readers to [8]. Green colored line are the execution
logs of intra-committee consensus phases, i.e., PREPARE,
PRE-COMMIT, COMMIT and DECIDE. Other colored lines
correspond to the verifiable decisions on aggregations of Com-
mittee1, Neighbor1 and Neighbor2. Contaminated decisions
would be detected with the given information.

B. Performance Evaluation

We conducted a simulation for performance evaluation on
pipelined PIRATE in a large scale scenario. On one machine,
we ran 50 to 100 instances to simulate a single committee.
According the selection ratio n/c2, we can speculate the per-
formance of 625 to 2500 nodes in total due to the concurrent
nature of PIRATE. We assume devices spend a same amount
of time for computing gradients. We simulate this process by
having instances wait for a same amount of time to generate an
equal-sized chunk of data (28 MB). Then, instances transmit
chunks of data to simulate the decentralized D-SGD process
of PIRATE. The machine is a mini PC (model serial number:
NUC8i5BEK), with a quad-core i5-8259U processor (3.80
GHz). To simulate the network condition of 5G, we assume
every message has a 10 ms latency. And the uplink bandwidth
is uniformly-distributed ranging from 80 Mbps to 240 Mbps,
while the downlink bandwidth is set to 1 Gbps.

2https://github.com/hot-stuff/libhotstuff



7

Fig. 4. Efficiency as shown in the right-top section, is evaluated with a simulation. The rest of the figure demonstrates how the prototype works. In the
simulation section, the left-top figure: Gradient Storage of PIRATE vs. iteration with single gradient size of 28 MB. The right-top figure: Gradient Storage
of LearningChain vs. iteration with the single-gradient size of 28 MB. The Bottom figure: Iteration time of PIRATE and LearningChain vs. number of nodes
with the single-gradient sizes of 28 MB and 10 MB. In the prototype section, the upper part is the abstraction of the whole process. The lower part is the
execution results recorded in a logfile.

We compare PIRATE with another blockchain-based D-
SGD framework LearningChain without the presence of ma-
licious node. We first compare the gradient storage overhead
of the two frameworks. We then compare the iteration time
measured by the time used to broadcast a block.

As Fig. 4 shows, gradient storage overhead for PIRATE
are constant as iteration progresses, while LearningChain’s
storage has a linear growth. In each iteration, PIRATE stores
only the leader’s gradient, the neighbor committee’s gradient
and the local gradient itself has computed. In LearningChain,
nodes are required to store the history of all leader-announced
gradients, and the local gradients broadcast by all nodes.

Fig. 4 shows that PIRATE outperforms LearningChain on
iteration time. The major cost in each iteration is the broadcast
of gradients. PIRATE shows a superior performance in terms
of iteration time for each committee. This is because nodes
are required to broadcast to only c members, meanwhile,
consensus decisions are reached concurrently.

VI. OPEN ISSUES

The open issues are envisioned as follows.
• Decentralized Permission Control. Candidates having

inferior computation ability, bad historical credit scores
and unstable network conditions can undermine the ef-
ficiency of distributed learning. Without a centralized
permission control, reliability assessment is challenging,
especially for realtime attributes. Latency induced by

decentralized communication and verification inevitably
affects timeliness.

• Protection Against Model Poisoning Attack. When
applied to FL, PIRATE faces a challenging issue of
model-poisoning attack. The attack can be successful
even for a highly constrained byzantine node [15]. By
exploiting the non-i.i.d property of data shards, byzantine
attackers can send poisoned local updates that do not hurt
convergence. Such harmful local updates can still affect
the global model that triggers misclassifying. The attack
is also “sneaky” enough to bypass accuracy checks from
central servers. In a decentralized environment, where
nodes are less constrained in terms of communicating,
computing and validating, model poisoning attack can be
even more threatening.

• Privacy Protection. When computing nodes train their
own data and upload training models for aggregations
(like FL), it is possible for attackers to reconstruct the
private data using gradient information. For privacy pro-
tection, differential privacy mechanism is widely used
[11]. However, inevitably there is a trade off between
a privacy budget and training accuracy. A well-balanced
protection mechanism in both privacy and training accu-
racy is tempting.

VII. CONCLUSION AND FUTURE WORK

To guarantee the high availability of distributed learning in
5G era, a distributed-learning framework with high efficiency,



8

decentralization and byzantine-resiliency is in urgent need. To
fill this gap, we propose PIRATE, a byzantine-resilient D-
SGD framework under the decentralized settings. Utilizing a
sharding-based blockchain protocol, learning convergence can
be well protected. A prototype is implemented to show the
feasibility of the proposed PIRATE. The simulation results
show that PIRATE scales better than the existing solution
LearningChain. As future work, we will further analyze the
robustness of PIRATE with extensive experiments.

VIII. ACKNOWLEDGEMENT

This work is partially supported by National Natural Sci-
ence Foundation of China (61902445, 61872310), partially by
Fundamental Research Funds for the Central Universities of
China under grant No. 19lgpy222, and partially by Guangdong
Basic and Applied Basic Research Foundation under Grant
2019A1515011798.

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
numerical methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

[2] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.
[Online]. Available: http://doi.acm.org/10.1145/359545.359563

[3] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” in Advances in
Neural Information Processing Systems, 2017, pp. 5330–5340.

[4] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Ma-
chine learning with adversaries: Byzantine tolerant gradient descent,”
in Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 119–129.

[5] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning
in adversarial settings: Byzantine gradient descent,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 1, no. 2, pp. 44:1–44:25, Dec. 2017. [Online].
Available: http://doi.acm.org/10.1145/3154503

[6] S. Li, Y. Cheng, Y. Liu, W. Wang, and T. Chen, “Abnormal client behav-
ior detection in federated learning,” arXiv preprint arXiv:1910.09933,
2019.

[7] “Bitcoin: A peer-to-peer electronic cash system,” 2009. [Online].
Available: bitcoin.org

[8] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus in the lens of blockchain,” 2018.

[9] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2018,
pp. 931–948.

[10] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochas-
tic gradient descent,” in Advances in neural information processing
systems, 2010, pp. 2595–2603.

[11] X. Chen, J. Ji, C. Luo, W. Liao, and P. Li, “When machine learning meets
blockchain: A decentralized, privacy-preserving and secure design,” 12
2018, pp. 1178–1187.

[12] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approxima-
tion by averaging,” SIAM Journal on Control and Optimization, vol. 30,
no. 4, pp. 838–855, 1992.

[13] J. Ji, X. Chen, Q. Wang, L. Yu, and P. Li, “Learning to
learn gradient aggregation by gradient descent,” in Proceedings
of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 7 2019, pp. 2614–2620. [Online]. Available:
https://doi.org/10.24963/ijcai.2019/363

[14] D. Koo, Y. Shin, J. Yun, and J. Hur, “Improving security and reliability
in merkle tree-based online data authentication with leakage resilience,”
Applied Sciences, vol. 8, no. 12, p. 2532, 2018.

[15] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyz-
ing federated learning through an adversarial lens,” arXiv preprint
arXiv:1811.12470, 2018.

Sicong Zhou (chowsch2@mail2.sysu.edu.cn) is currently with the School of
Data and Computer Science, Sun Yat-Sen University, China. His research
interests mainly include distributed learning and blockchain performance
optimization.

Huawei Huang (M’16) (corresponding author, huanghw28@mail.sysu.edu
.cn) received his Ph.D in Computer Science and Engineering from the
University of Aizu, Japan. He is currently an associate professor with the
School of Data and Computer Science, Sun Yat-Sen University, China. His
research interests mainly include distributed learning and blockchains. He
has serves as a visiting scholar with the Hong Kong Polytechnic University
(2017-2018); a post-doctoral research fellow of JSPS (2016-2018); an assistant
professor with Kyoto University, Japan (2018-2019).

Wuhui Chen (chenwuh@mail.sysu.edu.cn) is an associate professor in Sun
Yat-sen University, China. He received his bachelor’s degree from Northeast
University, China, in 2008. He received his master’s and Ph.D. degrees from
University of Aizu, Japan, in 2011 and 2014, respectively. From 2014 to
2016, he was a JSPS research fellow in Japan. From 2016 to 2017, he
was a researcher in University of Aizu, Japan. His research interests include
Edge/Cloud Computing, Cloud Robotics, and Blockchain.

Pan Zhou (M’14) (panzhou@hust.edu.cn) is currently an associate professor
with School of Electronic Information and Communications, Wuhan, P.R.
China. He received his Ph.D. in the School of Electrical and Computer
Engineering at the Georgia Institute of Technology (Georgia Tech) in 2011,
Atlanta, USA. He received his B.S. degree in the Advanced Class of
HUST, and a M.S. degree in the Department of Electronics and Information
Engineering from HUST, Wuhan, China, in 2006 and 2008, respectively. He
held honorary degree in his bachelor and merit research award of HUST in
his master study. He was a senior technical member at Oracle Inc., America,
during 2011 to 2013, and worked on Hadoop and distributed storage system
for big data analytics at Oracle Cloud Platform. He received the “Rising Star
in Science and Technology of HUST” in 2017. His current research interest
includes: security and privacy, big data analytics and machine learning, and
information networks.

Zibin Zheng (SM’16) (zhzibin@mail.sysu.edu.cn) received the Ph.D. degree
from the Chinese University of Hong Kong, Hong Kong, in 2012.,He is
a Professor with the School of Data and Computer Science, Sun Yat-
sen University, Guangzhou, China. His current research interests include
service computing and cloud computing.,Prof. Zheng was a recipient of the
Outstanding Ph.D. Dissertation Award of the Chinese University of Hong
Kong in 2012, the ACM SIGSOFT Distinguished Paper Award at ICSE
in 2010, the Best Student Paper Award at ICWS2010, and the IBM Ph.D.
Fellowship Award in 2010. He served as a PC member for IEEE CLOUD,
ICWS, SCC, ICSOC, and SOSE.

Song Guo (M’02-SM’11-F’20) (song.guo@polyu.edu.hk) received his Ph.D.
degree in computer science from the University of Ottawa, Canada. He is
currently a full professor at Department of Computing, The Hong Kong
Polytechnic University. His research interests mainly include cloud and
green computing, big data, and cyber-physical systems. He serves as an
Editor of several journals, including IEEE TPDS, TETC, TGCN, and IEEE
Communications Magazine. He is a senior member of IEEE and ACM, and
an IEEE Communications Society Distinguished Lecturer.


