Revisiting Double-Spending Attacks on the Bitcoin Blockchain: New Findings

Jian Zheng, Huawei Huang, Canlin Li, Zibin Zheng, Song Guo*
School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, China
*Department of Computing, The Hong Kong Polytechnic University, Hong Kong.

Presentation for IWQoS 2021
Double-Spending Attack

☐: Block mined by an honest miner
○: Block mined by the attacker

① Target TX is released
② Forking attack
③ Pack the target TX
④ Confirmation position
⑤ Release all blocks
Our contribution

• **Adaptive DSA**: Adaptive Double-Spending Attack

• Profit-maximized attack strategy by Stochastic Dynamic Programming (SDP)

• Analytical model for simulation
An unfavourable situation to the attacker

- The attacker is mining
- Honest miners are mining

- The transaction has not been confirmed in $S_{1,5}$.

- Should the attacker give up?
Attack decision: Quit or Keep

- **0**: Quit attacking

- **i = 3**
 - **j = 2**
 - Case-1

- **i = 1**
 - **j = 2**
 - Case-2

- **i = 2**
 - **j = 2**
 - Case-3
Attack decision: Quit or Keep

- 1: Keep attacking

p, q: the probabilities of state transition

$p: S_{i,j} \rightarrow S_{i+1,j}$

$q: S_{i,j} \rightarrow S_{i,j+1}$
Attack-Decision Matrix

- Variables: \(d_{i,j} \in \{0, 1\} \)
 - 0: Quit attacking
 - 1: Keep attacking

- Profit: \(f(\{d_{i,j}\}) \)

- Tools:
 - Occurrence-Probability Matrix
 - Reward Matrix

<table>
<thead>
<tr>
<th>(d_{ij})</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Occurrence-Probability Matrix

\[P_{i,j} = \begin{cases}
1, & \text{if } i = j = 0; \\
d_{i-1,j} \cdot p \cdot P_{i-1,j}, & \text{if } j = 0 \text{ or } i = z; \\
d_{i,j-1} \cdot q \cdot P_{i,j-1}, & \text{if } i = 0 \text{ or } j = z; \\
d_{i-1,j} \cdot p \cdot P_{i-1,j} + d_{i,j-1} \cdot q \cdot P_{i,j-1}, & \text{otherwise.}
\end{cases} \] (1)

\[P_{i,j} \begin{array}{ccccccc}
 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \]
\[R_{i,j} = \begin{cases}
- (i + j) \cdot \text{cost}, & \text{if } i < j; \\
i \cdot d - (i + j) \cdot \text{cost}, & \text{if } z > i > j; \\
p \cdot i \cdot d - (i + j) \cdot \text{cost}, & \text{if } z > i = j; \\
p[b + d(z + 1) - (i + j + 1) \cdot \text{cost}] + q \cdot R_{i,j+1}, & \text{if } i = z, j \leq z - 2; \\
p[b + d(z + 1) - (i + j + 1) \cdot \text{cost}] + q[p(b + z \cdot d) - 2z \cdot \text{cost}], & \text{if } i = z, j = z - 1.
\end{cases} \]
Profit-Maximization Problem

- **0**: Quit attacking
- **1**: Keep attacking

\[d_{i,j} \in \{0, 1\} \]

\[
\max f(\{d_{i,j}\}) = \sum_{i=0}^{z} \sum_{j=0}^{z} (1 - d_{i,j}) \cdot P_{i,j} \cdot R_{i,j}
\]
• $d_{i,j}=0$, quit attacking

$$J_n(s_{i,j}) = J_{n+1}(s'_{i,j}) = \begin{cases} 0, & \text{if } 0 \leq i < j \leq z - 1; \\ i \cdot d, & \text{if } 0 \leq j < i \leq z - 1; \\ p \cdot i \cdot d, & \text{if } 0 \leq i = j \leq z - 1. \end{cases}$$

<table>
<thead>
<tr>
<th>$J_n(s_{i,j})$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
</table>
Stochastic Dynamic Programming (SDP)

• $d_{i,j} = 1$, keep attacking

$$J_n(s_{i,j}) = -\text{cost} + p \cdot J_{n+1}(s_{i+1,j}) + q \cdot J_{n+1}(s_{i,j+1})$$

p, q: the probabilities of state transition
Performance Evaluation

The proportion of the hashpower controlled by the attacker (represented by p)
Performance Evaluation

The proportion of the hashpower controlled by the attacker (represented by ρ)
Conclusion

• **Adaptive DSA**: new threat to PoW-based blockchains

• 50% is not enough

• More strategies in the double-spending attack
Thanks

HuangLab@SYSU http://xintelligence.pro/