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Abstract— A cross-shard transaction (CTX) is parsed into
two sub-transactions, which are then executed in the source and
destination shards, respectively. However, the problem is that the
client who submits the original transaction only pays one unit of
the transaction fee. Thus, sub-transactions will experience much
higher queueing delays than regular intra-shard transactions
when they wait in shard transaction pools. This is unfair for those
original transactions that will be parsed into sub-transactions
from the perspective of a sharded blockchain. Therefore, how to
ensure fairness for all CTXs while securing the atomicity of any
pair of sub-transactions becomes a critical challenge. State-of-
the-art solutions addressed the transaction atomicity challenge,
but the literature still lacks a dedicated incentive mechanism to
ensure the fairness of CTXs. To this end, we propose an incentive
mechanism named Justitia, which aims to achieve fairness
by motivating blockchain proposers to prioritize the CTXs
queueing in transaction pools when they package transactions
to generate a new block. We rigorously analyze that Justitia
upholds the fundamental properties of a sharded blockchain,
including security, atomicity, and fairness. We then implement
a prototype of Justitia on an open-source sharding-enabled
blockchain testbed. Our experiments using historical Ethereum
transactions demonstrate that i) Justitia guarantees fairness
while processing CTXs, ii) its token-issuance mechanism does
not lead to unstable economic inflation, and iii) Justitia only
yields 20%-80% of queueing latency for CTXs upon comparing
with Monoxide protocol.

Index Terms—Incentive, Blockchain, Fairness, Sharding.

I. INTRODUCTION

In sharded blockchains, there are two types of transactions,

i.e., intra-shard transactions (abbr. as ITX) and cross-shard

transactions (abbr. as CTX). Suppose that a client submits a

TX ⟨A → B : x, f⟩ as shown in Fig. 1, where account A
transfers a number x (>0) of tokens to account B, paying a

transaction fee f (>0). This transaction is an ITX if account A
and account B are located at the same shard. Otherwise, it is

a CTX if accounts A and B are located at different shards. To

ensure the atomicity of CTXs, researchers proposed the relay-

transaction mechanism in Monoxide [1], which is a classic

state-sharding protocol. A CTX is split into two CTXs (e.g.,

CTX and CTX’, as shown in Fig. 1), which participate in

individual consensus in the source and destination blockchain

shards, respectively. The queueing latency of a CTX is the sum

of its queueing duration in the transaction pools (TX pools)
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Fig. 1. The processing steps of a CTX in the sharded blockchain. Step 1⃝:
the first part of this CTX is recorded on the source shard’s blockchain. Step
2⃝: a relay-transaction message (the second part of this CTX, i.e., CTX’, is

enclosed) is delivered to the destination shard. Step 3⃝: CTX’ enters into the
destination shard’s TX pool.

of both its source and destination shards. A CTX’s queueing

latency accounts for most of its overall makespan. Although

the relay-transaction mechanism proposed by Monoxide [1]

can secure the so-called eventual atomicity for CTXs [2], the

queueing latency of CTXs is significantly higher than that of

intra-shard transactions. Therefore, it is unfair for those CTXs

from the perspective of a sharded blockchain. This unfairness

in queueing latency can degrade the user experience for those

who initiate a transaction, but this user does not know his/her

transaction is going to be split into CTXs.

Our hypothesis. Compared to ITXs, CTXs are suffering

higher queueing latency in shards’ TX pools because of the

following two reasons: Firstly, from the client’s perspective

who submits a TX to the blockchain, the client only pays a

regular transaction fee [3]. Clients don’t know whether their

TX will be processed as a CTX or an ITX. The transaction

fee of a CTX is split into two portions, paid to the proposers

located at the corresponding source and the destination shards,

respectively. Secondly, in the relay-transaction mechanism,

CTXs need to participate in the local consensus in both the

source and the destination shard’s TX pools. In contrast, ITXs

only need to participate once. In summary, these two reasons
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Fig. 2. Motivation experiments. (a): CTXs suffer from higher queueing
latency than ITX, and (b) CTXs have a lower confirming ratio compared
to ITXs. Here, KDE stands for Kernel Density Estimation.

induce that CTXs usually have much higher queueing latency

in sharded blockchains. No clients desire unpredictable service

time for their transactions. Thus, from the perspective of the

sharded blockchain, both CTXs and ITXs must be treated

equally and fairly.

To prove our hypothesis described above, we conducted a

group of motivation experiments. The experimental observa-

tions illustrate the unfairness between CTXs and ITXs when

they queue in the TX pools. The experiments are explained

below.

Motivation experiments. The following experiments in-

vestigate the queueing latency of both CTXs and ITXs when

adopting Monoxide’s relay-transaction mechanism [1]. Our

experiment replicates around 500k Ethereum TXs [4] across

hundreds of consensus epochs. In each epoch, TXs are injected

into four blockchain shards at a rate of 1000 TXs per second.

The transaction fee of each CTX is shared on average by both

its source and destination shards. Due to the fast transaction

injection rate, proposers always have ITXs and CTXs available

in the TX pools for selection when they generate blocks.

(a) Fig. 2(a) illustrates that CTXs generally experience higher

queueing latency than ITXs.

(b) The left-hand side of Fig. 2(b) shows the input numbers

of CTXs and ITXs queueing in TX pools (i.e., 352k

and 130k, respectively). The right-hand side shows the

numbers of CTXs and ITXs that are confirmed in the

blockchain at the end of the experiment (i.e., 30k and

81k, respectively). CTXs have a lower confirming ratio

than ITXs (i.e., 30k/352k vs 81k/130k, respectively).

Motivated by those observations, we aim to achieve the

following two goals in this paper: i) to reduce the unfairness in

queueing latency between CTXs and ITXs. and ii) to guarantee

the basic properties of a sharded blockchain [5]. To achieve

our goals, we devise an incentive mechanism for the sharded

blockchains using the theory of Shapley value [6], [7].

Our study includes the following contributions.

• Originality. We aim to address the challenge brought

by the unbalanced transaction confirmation latency and

queueing latency when blockchain shards package the

CTXs and ITXs from transaction pools. To this end, we

design an incentive mechanism to incentivize proposers

to package CTXs from TX pools in a fair way. We also

generalize our incentive to the multi-input multi-output

case of CTXs.

• Theory guaranteed. We rigorously analyze its funda-

mental properties in the context of a sharded blockchain,

i.e., security, atomicity, and fairness.

• Practicality. Finally, we conduct experiments on an open-

source testbed named BlockEmulator, using the historical

Ethereum transactions. The evaluation results show that

the proposed incentive mechanism can enable CTXs to

have low queueing latency and assure security, atomicity,

and fairness properties.

II. RELATED WORK

Sharded Blockchains. In sharded blockchains, nodes are

organized into shards for parallel operation, offering lin-

ear scalability [8], [9]. Elastico [10] implements the basic

network sharding, with each shard processing distinct TXs

while maintaining the full blockchain ledger. Omniledger [11]

further presents state sharding, assigning a separate ledger

to each shard. RapidChain [12] enhances Omniledger with

high-throughput intra-shard consensus, lightweight shard re-

configuration via the Cuckoo rule, and fast cross-shard com-

munication via the Kademlia protocol. Monoxide [1] features

asynchronous sharding with Chu-ko-nu mining and eventual

atomicity, improving system throughput and CTX processing

efficiency. Furthermore, CoChain [13] solves the weak security

of sharded blockchains facing corrupted shards with an inter-

shard monitoring protocol.

Processing CTXs. Processing CTXs is crucial for state

sharding. Existing sharded blockchains commonly use two

strategies: 2-Phase Commit (2PC) protocols [11]–[15] and

Asynchronous Methods (Asyn-M) [1]. Omniledger [11] pio-

neers 2PC for CTX processing, dividing each CTX into input

and output operations. Clients collect acceptance proofs from

input shards (Phase-1) and notify the output shard for payment

(Phase-2) to prevent incomplete operations. RapidChain [12]

adapts 2PC, assigning coordination to output shard leaders to

address client reliability concerns. Dang et al. [14] combine

Practical Byzantine Fault Tolerance (PBFT) and 2PC in a

distributed protocol for CTX processing, ensuring protocol

liveness through a reference committee. Monoxide [1] intro-

duces Asyn-M, using anonymous, lock-free CTX processing

where transaction proofs integrate into input shards’ blocks

and relay to output shards for eventual atomicity. Asyn-M

circumvents lock/unlock costs but cannot fully meet real-time

CTX processing requirements (e.g., security and fairness).

Unlike state-of-the-art studies, we investigate how to guarantee

fairness between CTXs and ITXs.

Note that some recent research aims to address the concern

of CTX processing by reducing the CTX number. For example,

OptChain [16] and SPRING [17] use graph theory and deep

reinforcement learning, respectively, to optimize TX place-

ment. Similarly, Pyramid [18] and BrokerChain [19] introduce

bridge shards and broker accounts to convert CTXs into ITXs.

Nonetheless, given that the proportion of CTX in practical

sharded blockchains exceeds 90% [20], the frequent executions



of these mechanisms complicate the sharding workflow and

may disrupt decentralization. In contrast, our proposal encour-

ages mining nodes to process CTXs via incentives, incurring

no additional cost.

III. PRELIMINARIES AND SYSTEM MODEL

A. Preliminaries

1) Blockchain Nodes and Clients: Different from the pre-

vious work [18], [19], we do not introduce any additional

centralized entities. Our system only involves two types of

stakeholders, i.e., clients and block proposers. Clients initiate

transaction requests through their digital wallets, while pro-

posers perform essential tasks such as participating in intra-

shard consensus and processing client-submitted transaction

requests.

According to their behaviors, proposers can be divided into

two categories, i.e.,honest nodes and Byzantine nodes. Honest

nodes are profit-driven, which means they will exploit the

blockchain’s consensus protocol and incentive mechanisms

to maximize their profits. Differently, Byzantine nodes might

launch malicious attacks. Note that a secure blockchain system

can tolerate at most a specific percentage of Byzantine pro-

posers, e.g., 1/3 is such the security threshold in a PBFT-based

blockchain. When the proportion of honest nodes exceeds the

blockchain’s security threshold, honest proposers will generate

blocks through the consensus mechanism and obtain profits

according to the incentive mechanism.

2) Transaction Model: Our system adopts the account-

based TX model rather than the Unspent Transaction Output

(UTXO) model. The payer’s and payee’s accounts of a CTX

are at different shards.

3) Shard Formation and Network Model: We apply the

most straightforward shard formation, i.e., randomly distribut-

ing all proposers into multiple equal-size shards. Clients can

connect to an arbitrary number of proposers. For the network

model, we make the following two requirements: i) the intra-

shard communication is synchronous, and ii) the cross-shard

communication is partial-synchronous. Both requirements are

also adopted by other sharded blockchains [10], [12].

B. System Model

The working flow of our system is divided into successive

epochs. Each epoch includes the following major phases.

1) Randomness Generation and Node distribution: In this

phase, the blockchain system distributes newly-arrived nodes

into several shards. We adopt an established approach to reach

this goal. More details can be found in [12].

2) Intra-shard Consensus: In our system, intra-shard con-

sensus is a pluggable module. No matter what consensus is

chosen, this step mainly completes three tasks: i) nominating

a block proposer; ii) letting the proposer select TXs from the

local TX pool and create a pending block (Step 1⃝ in Fig. 1);

and iii) verifying the proposed block.

3) CTX’s Processing: Our system model considers only

token-transfer TXs, which are not related to smart contracts.

As shown in Fig. 1, a CTX originates from its source shard. We

also represent each cross-shard TX as CTX ⟨A → B : x, f⟩,
where A ∈ [S] and B ∈ [S] are the source and destination

shards, respectively, and [S] denotes the set of all blockchain

shards.

When completing intra-shard consensus in the source shard,

the proposer broadcasts a message (abbr. Msg.) to the entire

network, i.e., Step 2⃝ in Fig. 1. The message Msg. contains all

the necessary information for the destination shard of CTX.

When the destination shard receives Msg., the receiver nodes

will verify all the contained CTXs. After verification, a new

TX corresponding to the original CTX is then generated as

shown in Step 3⃝ of Fig. 1. We denote this new TX by CTX’.

Next, CTX’ joins the queue of the destination shard’s TX pool

and waits to participate in consensus.

IV. DESIGN OF INCENTIVE MECHANISM

In this section, we elaborate on the design of our incentive

mechanism. To help readers better understand our design, we

first introduce the basic symbols and definitions, then present

a strawman and the proposed incentive mechanisms.

A. Basics of Incentive Mechanism

We consider a CTX, say CTX1 ⟨A → B : x, fAB⟩ across

shards A and B (A,B ∈ [S]), to facilitate the description of

both the strawman and the proposed incentive mechanisms.

Since proposers are profit-driven, a certain TX fee is required

for both ITXs and CTXs [21]. As shown in Fig. 3, we let fAB ,

E(fA), and E(fB) denote the TX fee for CTX1, the expected

average TX fee for ITXs in source shard A, and the

expected average TX fee for ITXs in destination shard

B, respectively. In practice, we can estimate the average ITX

fees E(fA) and E(fB) by averaging all the ITXs contained

in a few number of most recent blocks.

In fact, the underlying blockchain sharding is a black box

to clients because clients cannot figure out whether their trans-

action is an ITX or a CTX. When clients submit a TX to the

blockchain system, they pay a regular TX fee. This behavior

will lead to the fact that the cross-shard fee fAB approximates

the intra-shard fee E(fA), i.e., E(fAB) = E(fA). This fact is

an important condition to the proof of Theorem 4 in § V-C.

1) Introducing a subsidy parameter: Given a cross-shard

TX CTX1 ⟨A → B : x, fAB⟩, (A,B ∈ [S]), our system

introduces a dedicated subsidy for the proposers in both shards

A and B, to incentivize them to pick up CTXs from TX pools.

We use RAB (RAB ∈ R
+) to denote the subsidy issued by the

blockchain system. For each CTX, say CTX1, its transaction

fee fAB and the subsidy RAB accumulate as a logical Pending

reward. The accumulated reward fAB + RAB will be divided

into two portions, i.e., uA and uB , which are then reallocated

to shards A and B, respectively.

The definition of RAB is derived according to two obser-

vations. First, for CTX1, it involves two CTXs that need to

be processed in shards A and B. Second, in both A and
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shards A and B, respectively.

B, CTX1 needs to compete with other ITXs since profit-

driven proposers only choose the TXs that can maximize their

benefits. Therefore, RAB is designed to consider both E(fA)
and E(fB), i.e.,

RAB = F (E(fA), E(fB)), ∀A,B ∈ [S], (1)

where F (·) is a customized reward function. Eq. (1) indicates

that RAB is not affected by TX fee fAB . Otherwise, clients

would gain a great chance to disrupt our incentive mechanism

by setting an arbitrary value of fAB .

Note that introducing a subsidy to a blockchain system is

not straightforward because the developers need to handle

various issues such as the subsidy source, the inflation control,

the configuration of the subsidy to contributors, etc.

2) The subsidy source: The subsidy is issued by the

blockchain consensus to the proposer who wins the mining

reward of each round of consensus, just as the same way as

coinbase transaction works in Bitcoin. Clients do not need

to pay such a subsidy for their transactions.

3) Inflation control: Similar to the coinbase award in

Bitcoin, by setting an annual inflation rate [22], which is a real

number within a specified range [Γmin, Γmax], the developer

of a sharded blockchain system can control the inflation rate of

issuing tokens. We analyze the economic inflation introduced

by such subsidy-based incentive in § VI-C.

B. A Strawman Incentive Mechanism

Intuitively, the transaction fee fAB should be equally allo-

cated to shards A and B, because those two blockchain shards

process individual CTXs, i.e., CTX1 and CTX′
1, respectively.

Thus, as designed in Monoxide [1], a strawman incentive

mechanism is designed to split fAB equally for rewarding A
and B, respectively. Therefore, the final reward received by A
and B for processing a CTX is fAB/2 for each. As a result,

the equally-split reward fAB/2 obviously makes CTX1 less

competitive than most of ITXs in shard A, thereby bringing

CTX1 a long queueing latency in the TX pool of shard A.

Moreover, the strawman strategy ignores the workload im-

balance among shards. We consider a simple example as a case

TABLE I

THE DISTRIBUTION OF MARGINAL CONTRIBUTION.

Prob. Order A’s marginal

contribution

B’s marginal

contribution

1/2 A → B E(fA) RAB + fAB − E(fA)

1/2 B → A RAB + fAB − E(fB) E(fB)

study. Suppose that E(fA) rises to 20 since A is extremely

busy, thus clients have to offer higher TX fees to mitigate the

possible high queueing latency of their TXs. In contrast, B
is currently idle, and E(fB) drops to only 5. If fAB is 30,

both A and B can acquire 15 when the reward is split equally.

Since such a reward is less than E(fA), the equal allocation

cannot encourage the proposer in A to package CTX1.

C. The Proposed Incentive Mechanism

Next, we elaborate on how to allocate the total reward RAB

+ fAB to the proposers in shards A and B.

Inspired by the 2-party Shapley value [6], [7], we present the

idea of a new reward-allocation strategy. Firstly, the processing

of CTX1 can be viewed as a cooperative game G, whose

potential participants are A and B. Then, we derive the

marginal contribution as shown in Table I. If not participating

in G, proposers in shard A can use the reserved position

to package one ITX; the same rule applies for B. Thus,

when working individually, shards A and B can make the

contributions denoted by E(fA) and E(fB), respectively. As

for the arrival sequence, since processing a CTX is symmetric,

there are two orders: i) first A, then B; and ii) first B,

then A. If following the former, the marginal contribution

of A is E(fA). Consequently, B’s marginal contribution

equals the total cooperative reward from G subtracted by

the contribution made by A when working individually, i.e.,

RAB + fAB −E(fA). Similarly, the marginal contribution of

A and B following the second order can also be calculated. In

our design, the allocated rewards for the proposers in A and

B, denoted by u(A) and u(B), are perfectly equal to their

Shapley values [6], [7]:

u(A) =
fAB +RAB + E(fA)− E(fB)

2
, A,B ∈ [S]; (2)

u(B) =
fAB +RAB + E(fB)− E(fA)

2
, A,B ∈ [S]. (3)

As shown in Fig. 3, for CTX1 ⟨A → B : x, fAB⟩, Eqs. (2) and

(3) represent how source shard A and destination

B share the total reward, i.e., RAB + fAB . As for an intra-

shard transaction, the proposer packaging an ITX obtains all its

transaction fees. Differently, our reward-allocation strategy has

the following three features. Feature i), u(A) + u(B) = fAB

+ RAB . Feature ii), the workload imbalance among shards is

considered, because a higher workload in a shard indicates a

higher subsidy. Recalling the previous example, if RAB is 5

and the total reward fAB + RAB is allocated according to Eqs.

(2) and (3), u(A) and u(B) will be 25 and 10, respectively.

Since E(fA) is 20 and E(fB) is 5, both shards A and B,

in this case, are willing to participate in CTX’s packaging.



Feature iii), the bidirectional processing of CTXs is well-

preserved because Eqs. (2) and (3) also determine the reward

allocation for those CTXs transferring tokens from B to A.

D. Proposers’ Choices and Profits

Based on the proposed incentive mechanism, we then

discuss what choices proposers have when they intend to

maximize their profits. Since proposers’ profits all come from

the TX fees and the subsidies of CTXs, they need to figure out

which ITXs and CTXs are worth being packaged. Intuitively,

proposers could sort all queueing TXs according to their

rewards and select the most valuable ones to fully package a

block. However, in practice, the actual rewards for packaging

CTXs are unpredictable. For example, the reward for CTX1

will be issued only when it is completely processed and

confirmed on chain. If the withdrawal operation of CTX1 is

executed by a node in shard A while the payment is blocked

in B, A has the risk of wasting a position to package a TX

and thus losing a certain TX fee. Based on Eqs. (2) and (3),

we can acquire u(B) = u(A) − E(fA) + E(fB). Next, we

classify all the choices of whether a proposer should package

CTX1 into three cases for discussion.

• Case #1: When u(A) ≥ E(fA), our reward-allocation

strategy guarantees that u(B) ≥ E(fB). Hence, the

proposer in A tends to package CTX1 since CTX′
1 has

a great chance to be picked by another proposer in B
shortly.

• Case #2: When u(A) ≤ E(fA)−E(fB), we find u(B)
≤ 0. In this case, the proposer in A tends not to package

CTX1 since another proposer in B has no chance to

package CTX′
1.

• Case #3: When E(fA) − E(fB) < u(A) < E(fB),
both the proposers in A and B have some probabilities

to package CTX1 and CTX′
1, respectively, according to

the current congestion situations of their TX pools.

Remark 1. Proposers sort all TXs and select the ITXs whose

TX fee is no less than E(fA), and the CTXs meet Case #1.

If there is still available space in the block, proposers will

choose other ITXs and the CTXs meet Case #3.

E. How to Set the Subsidy Parameter

We next discuss the range of RAB and how to set RAB in

practice. Firstly, the lower bound of RAB is 0, implying that

our incentive mechanism does not give CTXs any subsidy.

In this case, only a few numbers of CTXs satisfying fAB ≥
E(fA) + E(fB) have a high probability of being picked up

from the TX pool. With the increasing value of RAB , CTXs

become more and more competitive than ITXs. When RAB

reaches E(fA) + E(fB), we can ensure the results u(A) ≥
E(fA) and u(B) ≥ E(fB), as long as fAB ≥ 0. In other

words, even though a CTX satisfies fAB = 0, it will not

be ignored by both shards A and B. This is because current

u(A) and u(B) are equal to E(fA) and E(fB), respectively.

Therefore, the upper bound of RAB is E(fA) + E(fB).
To support different sharding architectures and applications,

our incentive mechanism enables system designers to set a
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sophisticated value of RAB by defining the reward function

F (·). In this paper, we mainly consider three cases, i.e., RAB

= 0, RAB = E(fA) + E(fB), and RAB = E(fB). This is

because the first two cases are the lower bound and the upper

bound of RAB , respectively. The third case RAB = E(fB)
can ensure the proposer’s fairness, which is analyzed in the

next section.

F. Generalizing to Multi-Input Multi-Output (MIMO) CTXs

In practice, MIMO CTXs exist in some blockchains that

support complicated token transfers. As shown in Fig. 4,

a MIMO CTX has multiple input accounts and/or multiple

output accounts. Our incentive mechanism can be further

extended to the MIMO case. We let m (m ∈ N+) and n
(n ∈ N+) represent the number of input accounts and output

accounts of a MIMO CTX, respectively. The set of shards

where all the input and output accounts of a MIMO CTX

locate is represented by I (I ⊆ [S]). We then define RI

(I ⊆ [S]) to denote the subsidy parameter for all the proposers

who locate at shard i (∀i ∈ I). Thus, the MIMO CTXs having

the same set I share the same subsidy RI . Next, fI (I ⊆ [S])

is defined to represent the TX fee of the MIMO CTX whose

involved accounts are in shard i (∀i ∈ I). In addition, E(fi)
(i ∈ I) is the expected average TX fee of all the ITXs in the

pool of shard i (i ∈ I).

To show a generalized formulation, we consider the case

where each input account and output account belong to dif-

ferent shards, just as the CTX shown in Fig. 4. Similarly, we

still adopt the Shapley value [6], [7] to derive the following

reward-allocation function u(i) (∀i ∈ I), which is shared by

all the proposers located at shard i (∀i ∈ I).

u(i) = E(fi) +
fI +RI −

∑
i′∈I E(fi′)

m+ n
, ∀i ∈ I. (4)

Discussion: For MIMO CTXs, our incentive mechanism

has three merits similar to single-input single-output CTXs.

Firstly, we have
∑

i∈I u(i) = fI+RI . Secondly, the workload

imbalance among shards is considered, and a higher workload

indicates a higher subsidy. Thus, the short queueing latency of

CTXs can be guaranteed. Finally, the bidirectional processing

of CTXs is well-preserved for MIMO CTXs.



V. ANALYSIS OF THE PROPOSED MECHANISM

This section first analyzes three types of threats of

Justitia and then proves Justitia achieves the desired

properties of atomicity and fairness.

A. Threat Analysis of Justitia

Before analyzing the threats of Justitia, we present

the setting of sharded blockchains served by Justitia. In

sharded blockchains, nodes have the following four straight-

forward types of facts: i) Fact I, the node is awarded by the

sharded blockchain protocol while becoming a block proposer;

ii) Fact II, the proposer within an epoch of consensus is

randomly selected; iii) Fact III, honest nodes are profit-driven

and always pursue the maximum reward; iv) Fact IV, The

proportion of profit-driven honest nodes on each shard exceeds

the security threshold of the sharded blockchain consensus.

In other words, even Byzantine nodes are unable to generate

blocks that violate the incentive mechanism of the blockchain.

In Justitia, there exist the following three types of

threats.

• Threat #1 (Token Inflation): The economic inflation of

a subsidy-rewarded blockchain could be possible. This is

because the subsidy RAB is the extra tokens issued by

the sharded blockchain. Thus, the total amount of tokens

dynamically increases.

• Threat #2 (Selfish Packaging): Proposers can enforce

the system to increase the subsidy RAB . This is because

proposers always prefer packaging the TXs with high

fees. Thus, malicious proposers may create numerous

high-fee TXs, thereby making a shard’s average fee

increase by force.

• Threat #3 (CTX Flood): Proposers can create and

submit numerous CTXs to the TX pools of blockchain

shards by colluding with other peers through inter-shard

collusion. Therefore, those proposers can acquire a large

portion of subsidies RAB by packing these high-fee TXs.

Next, we analyze how Justitia tackles those threats.

Corresponding to Threat #1, the blockchain developers can

eliminate economic inflation by setting an annual inflation

rate [22], which is within a specified range [Γmin, Γmax].

Denoting the total expected number of blocks by N0, the

total amount of subsidies of each single block, denoted by∑
∀AB RAB , should satisfy N0 ·

∑
∀AB RAB ∈ [Γmin, Γmax].

In this way, blockchain developers get the boundaries of∑
∀AB RAB . Once the total subsidies of every block exceed

max(
∑

∀AB RAB), the proposer in a round of consensus

will not receive extra rewards, even if it packages extra

CTXs. On the other hand, the blockchain system will issue

min(
∑

∀AB RAB) to the proposer, when the total amount

of subsidies is lower than the minimum value. Through this

manner to choose the right annual inflation rate, Threat #1

can be avoided.

Corresponding to Threat #2, we have Theorem 1 as follows.

Theorem 1. Given a shared blockchain wherein nodes exhibit

four types of facts I-IV mentioned above, Threat #2 does not

hold.

Proof. From E(fs), (s ∈ [S]), we know that the collusive

proposers need to improve the average fee of the most recent

few blocks, if they intend to improve the average fee of the

current epoch of consensus in a shard. To achieve this goal, the

proposers of the most recent few epochs of consensus must

choose to package only a few number of high-fee TXs and

ignore the low-fee TXs by all means. Then, we discuss two

cases contradicted each other:

• If those proposers do not collude, Fact I indicates that

those proposers will lose benefits because of ignoring

those low-fee TXs even if they could have packaged

them. Thus, this result contradicts Fact III.

• If those proposers collude with each other, Fact II indi-

cates that those proposers cannot predict the new proposer

in the next epoch of consensus. Thus, a successful collu-

sion in a shard requires all shard nodes to participate in

the collusion. This result contradicts Fact IV.

Thus, it is not possible for malicious proposers to improve

the average fee by colluding with each other in a shard.

Theorem 1 holds.

Finally, we analyze Threat #3. From the conclusion of

Theorem 1, the average fee in a shard cannot be improved by

force. The proposers will lose benefits if they only package the

CTXs created by those collusive proposers themselves. This

result contradicts Fact III. Thus, proposers in any shard will

not choose to create CTXs by themselves. In summary, Threat

#3 does not exist when Fact I-IV hold.

B. Atomicity Analysis

Definition 1. (Latency-guaranteed atomicity) We call a cross-

shard TX has a time(t)-guaranteed atomicity if its relay

transaction completes consensus in the destination shard and

it is stored in a block within time t (t ∈ R
+).

Knowing the definition of latency-guaranteed atomicity, we

then analyze the latency-guaranteed atomicity of CTXs under

the proposed incentive mechanism. We consider two extreme

cases: hot shards and cold shards, in which blockchain shards

are congested by an overwhelming number of TXs or filled

by almost none TXs, respectively. When a shard is hot, clients

have to improve their TX fees in order to ensure their TXs

can be packaged by proposers within a short queueing latency.

Thus, E(fs) (s ∈ [S]) could be very large in hot shards. On the

contrary, in a cold shard, blocks are not packaged with the full

size. Thus, proposers are willing to package any transactions

from the shard’s TX pool. In a cold shard s ∈ [S], we consider

that E(fs) → 0. With those two extreme cases in mind, we

have the following lemmas.

Lemma 1. Given a CTX ⟨A → B : x, fAB⟩, (A,B ∈ [S]), if

B is a cold shard and satisfies u(B) > 0, this CTX has a

latency-guaranteed atomicity.



Proof. A CTX satisfying u(B) > 0 in a cold shard will be

packaged immediately. In other words, since this CTX enters

into the TX pool of a shard, there exists a time t0 (t0 ∈ R
+),

in which this CTX completes the consensus and is recorded

on the blockchain. Referring to Definition 1, we say this CTX

has a t0-guaranteed atomicity.

Lemma 2. Given a CTX ⟨A → B : x, fAB⟩, (A,B ∈ [S]), if

B is a hot shard and satisfies u(B) > E(fB), this CTX has

a latency-guaranteed atomicity.

Proof. When a CTX satisfying u(B) > E(fB) in a hot shard,

a proposer will choose to package this CTX by replacing a

low-fee ITX from its block. That is, since this CTX enters the

TX pool of a shard, there exists a time t1(∈ R
+), in which

this CTX can complete the consensus and is recorded on the

blockchain. Referring to Definition 1, we say this CTX has a

t1-guaranteed atomicity.

Theorem 2. Given a CTX ⟨A → B : x, fAB⟩, (A,B ∈ [S]), if

u(B) > E(fB), this CTX has a latency-guaranteed atomicity.

Proof. On the one hand, when B is a cold shard, the condition

u(B) > E(fB) > 0 holds. On the other hand, when B is a

hot shard, the condition u(B) > E(fB) holds. Referring to

Lemma 1 and Lemma 2, this CTX has a latency-guaranteed

atomicity. The conclusion of Theorem 2 holds.

Next, we prove that latency-guaranteed atomicity also holds

in three additional cases depending on the hot/cold conditions

of both the source and destination shards of a CTX.

Corollary 1. When the source shard of a CTX ⟨A → B :

x, fAB⟩ (A,B ∈ [S]), i.e., shard A, is a hot one and the

destination shard B is a cold one, proposers in A only package

the high-fee CTXs, and proposers in B are willing to package

any CTXs submitted to the TX pool immediately. This CTX

has a latency-guaranteed atomicity.

Proof. When the source shard A is a hot one, it only packages

the TXs satisfying u(A) > E(fA). When offering the subsidy

RAB to the proposers in the hot A, proposers tend to package

those high-fee CTXs if those CTXs satisfy fAB + RAB >
E(fA), due to Fact III. On the other hand, the subsidy RAB

helps a cold shard B improve the reward of proposers. Thus,

B has u(B) > (E(fB) = 0). Referring to Lemma 1, this CTX

has a latency-guaranteed atomicity.

Corollary 2. When the source shard of a CTX ⟨A → B :

x, fAB⟩ (A,B ∈ [S]) is a cold one and the destination shard

B is a hot one, proposers in shard A only package the CTXs

that meet the latency-guaranteed atomicity in shard B. This

CTX has a latency-guaranteed atomicity.

Proof. The cold source shard indicates that u(A) > E(fA),
and the destination shard only packages the CTXs satisfying

fAB +RAB > E(fB). Thus, we have u(B) = fAB +RAB >
E(fB). Referring to Lemma 2, this CTX has a latency-

guaranteed atomicity.

Corollary 3. When the source and destination shards of a CTX

⟨A → B : x, fAB⟩ (A,B ∈ [S]) are both cold ones, proposers

in both A and B are willing to package this CTX, and the

CTX has a latency-guaranteed atomicity.

Proof. The cold source and destination shards indicate that

E(fA) → 0 and E(fB) → 0. We then have u(A) =
(fAB+RAB)/2 > 0 and u(B) = (fAB+RAB)/2 > 0. Thus,

referring to Lemma 1, this CTX has a latency-guaranteed

atomicity.

TABLE II

ATOMICITY COMPARISON.

CTX1 ⟨A → B : x, fAB⟩ Atomicity guarantee for CTX1

Shard A Shard B Monoxide [1] Ours

Hot Hot ✗ ✓

Cold Hot ✗ ✓

Hot Cold ✓ ✓

Cold Cold ✓ ✓

As shown in Table II, our incentive mechanism maintains

good atomicity of CTXs in different cases of shards. In con-

trast, monoxide’s solution [1] can guarantee CTX’s atomicity

only when the destination shard is cold.

C. Analysis of Significant Fairness

To disclose more insights into the proposed incentive

mechanism in the context of a sharded blockchain system,

we also need to analyze whether it can guarantee two types

of significant fairness. i.e., System Fairness and Proposer’s

Fairness. First, we give their definitions as follows.

Definition 2. (System Fairness) For all transactions, whether

an ITX or a CTX, transactions with higher TX fee get the

lower expectation of queueing latency.

Definition 3. (Proposer’s Fairness) For each block’s proposer

in both shards A and B, packaging ITXs and CTXs brings

the same benefits, i.e., E(u(A)) = E(fA) and E(u(B)) =
E(fB).

Then, we analyze whether the proposed incentive mecha-

nism can ensure these two types of fairness.

Theorem 3. Given any RAB (RAB ∈ R
+), our incentive

mechanism can ensure the system fairness.

Proof. According to the proposed incentive mechanism, each

shard’s proposer sorts all the TXs by their potential rewards,

i.e.,, the higher the TX fee, this TX has the higher priority

in the queue of the TX pool. In consequence, the TXs with

higher fees will be packaged by proposers more easily, leading

to lower queueing latency in the TX pool. Therefore, the

TX fee and queueing latency are inversely correlated, thereby

guaranteeing the system fairness.

Remark 2. Although the system fairness might look trivial, it

tells us that the subsidy for the transaction with a higher TX

fee should be no less than the subsidy for the transaction with

a lower TX fee in order to satisfy such system fairness.



Theorem 4. When RAB = E(fB) (RAB ∈ R
+), our

incentive mechanism can ensure the proposer’s fairness.

Proof. We have u(A) = fAB+RAB+E(fA)−E(fB)
2 and

u(B) = fAB+RAB+E(fB)−E(fA)
2 . When RAB = E(fB),

u(A) = fAB+E(fA)
2 , u(B) = fAB+2·E(fB)−E(fA)

2 . Recall that

E(fAB) = E(fA) mentioned in § IV-A, we get E(u(A)) =

E( fAB+E(fA)
2 ) = E(fAB)+E(fA)

2 = E(fA), E(u(B)) =

E( fAB+2·E(fB)−E(fA)
2 ) = E(fAB)+2·E(fB)−E(fA)

2 = E(fB).
Referring to Definition 3, when RAB = E(fB) (RAB ∈ R

+),

the conclusion holds.

Additionally, we also have the following corollary.

Corollary 4. When the proposer’s fairness is satisfied, we

have E(fAB) +RAB = E(fA) + E(fB).

Proof. E(fAB + RAB) = E(fAB + E(fB)) = E(fAB) +
E(fB). Recall that E(fAB) = E(fA). Therefore, E(fAB) +
RAB = E(fAB) + E(fB) = E(fA) + E(fB).

Remark 3. Corollary 4 tells us when the equation E(fAB)+
RAB = E(fA) + E(fB) holds, the proposer’s profit has no

difference no matter it packages either a CTX or an ITX.

VI. IMPLEMENTATION AND EVALUATION

A. Experiment Settings

Prototype Implementation. We deployed the proposed

incentive mechanism on BlockEmulator [23] and evaluated

multiple blockchain metrics. To support all experiments, we

customize the PBFT as the intra-shard consensus protocol. All

blockchain shards asynchronously process TXs in parallel. We

also implement the relay-transaction mechanism proposed by

Monoxide [1] to enable the CTXs.

Datasets. We downloaded Ethereum [4] transaction dataset,

which contains more than one million real-world TXs from the

blocks whose heights range from 14920000 to 14937632. And

we use only token-transfer TXs in the dataset.

Transaction processing. Each shard block yielded by

BlockEmulator can include up to 400 TXs. Each shard node

queues the arrived TXs in the local TX pool and sorts them

according to the strategy elaborated in § IV-D.

Other parameters. The number of blockchain shards is set

to 4 by default. Our blockchain prototype injects 1,000 TXs

into all shards per second.

Baselines. We compare the proposed incentive mechanism

mainly with Monoxide [1], which equally splits fAB as the

reward for shards A and B, without subsidy for CTX’s

processing. We also implement various versions of incentives

by setting RAB to different values as follows.

• RAB = 0. No subsidy when packaging any CTX.

• RAB = E(fB). Fix the subsidy of a CTX to the average

fee of its destination shard.

• RAB = E(fA)+E(fB). Fix the subsidy of a CTX to the

summed average fees of both its source and destination

shards.

• RAB = 1 ETH / CTX. Fix the subsidy of packaging a

CTX to an extremely large value, i.e., 1 ETH per CTX.
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B. The Effect of Varying Subsidy Parameter

We conduct the first group of experiments to evaluate how

queueing latency varies between the CTXs and ITXs while

changing the subsidy RAB . Taking the first 500 thousand TXs

from the original TX dataset, we measure the queueing latency

of all CTXs under various incentive settings. Fig. 5 shows the

following observations. Under Monoxide’s case and RAB = 0,

the blockchain system does not issue any subsidy to CTX’s

processing. Thus, the queueing latency in these two cases is

much higher than that in the other three cases, as shown in the

right-hand side of Fig. 5. We also see that the subsidy solution

RAB = E(fA) +E(fB) leads to the lowest queueing latency

of CTXs. This observation validates that this subsidy solution

can help the sharded blockchain quickly package CTXs into

new blocks. However, CTX’s subsidy does not necessarily

reach an extremely large value, such as 1 ETH/CTX, because

this large subsidy does not further reduce CTX’s queueing

latency.

To highlight the effectiveness of reducing the CTX’s queue-

ing latency, we present Fig. 6 to illustrate the proportion of

the average queueing latency of CTXs to that of ITXs. Such

proportion decreases with the CTX’s increased subsidy RAB .

This result proves that the proposed incentive mechanism is

capable of ensuring CTXs’ higher priority than ITXs when

proposers are picking up TXs from the TX pool.

Fig. 7 presents a Kernel Density Estimation (KDE) plot

illustrating the distribution of transaction queueing latency in

seconds.We observe that the proposed incentive mechanism

effectively reduces CTXs’ queueing latency.Especially, even

without additional subsidy for cross-shard transactions (i.e.,

when RAB = 0), the proposed incentive mechanism still

keeps the queueing latency of CTXs concentrated at lower

values. This is because the proposed incentive mechanism

mitigates the impact of unbalance transaction workloads across

the blockchain shards.
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Fig. 8 shows the cumulative distribution function (CDF) of

CTXs’ queueing latency under various subsidy solutions. We

observe that the zero-subsidy solutions, such as Monoxide and

RAB = 0, induce large queueing latency of CTXs. In contrast,

a higher subsidy brings much lower queueing latency. Again,

the extremely large subsidy solution, RAB = 1 ETH/CTX

shows a saturated effect on the reduction of queueing latency

(i.e., a close latency to RAB = E(fA) + E(fB)).
In Fig. 9, we compare the ratios of CTXs between the

original input of all CTXs and the CTXs stored in packaged

blocks. Observing from the five bars on the right-hand side,

we see that a higher subsidy leads to a higher CTX ratio.

C. Security of Economic Inflation

Corresponding to Threat #1 as depicted in § V-A, we inves-

tigate the cumulative tokens issued by the sharded blockchain

under the proposed incentive mechanism. To provide compari-

son baselines, we also study two token-offering policies under

Ethereum’s two real cases. The first case is from the early-

stage Ethereum before the Byzantine forking [24]. The

token’s offering policy at that time was 5 ETH/block. The

second case refers to the Ethereum since Constantinople

forking at 2019 [25]. Since then, Ethereum’s token-issuing

speed has reduced to 2 ETH/block.

Fig. 10 shows the results under three subsidy settings and

Ethereum’s two cases. We have the following observations.

i) Although each subsidy solution of RAB dynamically

changes with the increased number of CTXs in new

blocks and the average TX fees in shards, the growing

trend of new tokens issued is stable. This trend is similar

to that of Ethereum’s cases.

ii) Comparing the two Ethereum cases, we see that the

number of cumulative tokens issued is positively re-

lated to the block-proposing reward, i.e., 2 ETH/block or

5 ETH/block. The same observations apply to the three

subsidy-based solutions. For example, RAB = E(fB)

shows the lowest amount of tokens issued. The solu-

tion RAB = E(fA) + E(fB) issues fewer tokens than

Ethereum’s 2 ETH/block before the first 40 chronological

blocks, and then approaches Ethereum’s 5 ETH/block

policy. The extreme subsidy RAB = 1 ETH/CTX induces

the largest amount of issued tokens.

In summary, under various settings of subsidy RAB , the

economic inflation of the total amount of tokens issued in the

sharded blockchain is approximated to that of Ethereum.

D. Verifying the Fairness Properties

To study the system fairness (i.e., Definition 2) of our

proposed incentive mechanism, we replay 500 thousands of

real Ethereum TXs in our BlockEmulator, following three

subsidy solutions, i.e., RAB = 0, RAB = E(fB), and

RAB = E(fA) + E(fB), respectively. Fig. 11 illustrates the

natural distribution of CTX’s queueing latency corresponding

to their real TX fees. We have the following two observations.

i) When the subsidy value for CTXs decreases from the highest

RAB = E(fA)+E(fB) to the lowest RAB = 0, the queueing

latency of CTXs grows. ii) The CTXs having higher subsidies

(under RAB = E(fB) and RAB = E(fA) + E(fB)) show

lower queueing latency, even when the TX fees are low. Those

observations show that the proposed incentive mechanism

guarantees the fairness of the blockchain system.

Finally, we verify the proposer’s fairness (i.e., Definition 3).

To prove the proposer’s fairness, we design a special experi-

ment with ITXs only, in which ITXs constitute the sole input to

the blockchain system. We observe from Fig. 12 that a higher

subsidy indicates the proposer’s higher profit. Specifically, the

proposer’s profits under the subsidy RAB = E(fB) are very

close to those observed in the ITX only scenario. This indicates

that when our incentive mechanism satisfies RAB = E(fB),
it can ensure the proposer’s fairness.

VII. CONCLUSIONS

To ensure the fairness of CTXs in a sharded blockchain,

we proposed an incentive mechanism named Justitia. We

also consider multi-input multi-output CTXs. The security,

atomicity, and fairness properties of Justitia are rigor-

ously analyzed. To evaluate Justitia, we implemented

a prototype on top of the open-source BlockEmulator to

conduct experiments. Experimental results demonstrate that

Justitia effectively guarantees fairness in terms of queue-

ing latency between CTXs and intra-shard transactions. Our

findings also provide insights into how the subsidy parameter

affects queueing latency and economic inflation from token

issuance in the sharded blockchain.
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