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Abstract—Sharding is a promising technique for scaling out
blockchains. For example, Ethereum introduced dank-sharding
in its upgrade EIP-4844. However, how to guarantee the security
of each network shard remains a challenge. In this paper, we
present DecoupleChain, a two-layer blockchain sharding system,
which implements the state sharding in a Layer2 blockchain
and adopts a Layer1 blockchain as a trusted reference for
Layer2’s state ledger. By decoupling the functions of Layer2
shards into consensus and storage, and developing a reliable
inter-layer data verification method based on Merkle proofs,
DecoupleChain can perform low-overhead frequent shard recon-
figuration during system running. Experiments using real-world
transactions demonstrate that the median reconfiguration latency
of our method is 35% lower than tMPT and 67% lower than Fast
sync. When reconfiguration occurs every 12 seconds, Ethereum’s
TPS decreases to 75% or even lower, while DecoupleChain’s TPS
remains stable without significant fluctuations.

Index Terms—Blockchain, Sharding, Reconfiguration

I. INTRODUCTION

Blockchain trilemma [1] suggests that the security, decen-
tralization, and scalability of a blockchain cannot be achieved
simultaneously. Classical blockchains like Bitcoin [2] and
Ethereum [3] prioritized security and decentralization but
sacrificed scalability. To meet the demands of high transac-
tion throughput and low transaction latency, Luu et al. [4]
proposed the first blockchain sharding protocol. The core
idea of sharding is to partition the blockchain network into
multiple segments, each of which is called a shard. By
allowing multiple shards to verify and execute transactions in
parallel, a sharded blockchain can achieve higher throughput
and scalability. Subsequent studies on sharding, including
OmniLedger [5], Rapidchain [6], and Monoxide [7], have
extended the technique of blockchain sharding. Nowadays,
advanced sharding approaches widely adopt state sharding [8],
in which accounts and transactions are allocated to different
network shards. The advantage of state sharding is that it
reduces the storage overhead for each shard because all shards
can collaboratively amortize a proportion of the entire state of
all accounts.

Even though sharding technology offers promising
prospects for large-scale blockchain applications, it currently
faces challenges. Public blockchains typically operate in
unregulated environments. When profitable, attackers might
employ various tactics such as scams, DDoS, and bribery
attacks [9], [10], etc., to conquer network nodes within a
blockchain. Attackers could interfere and even manipulate
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Fig. 1. Motivation experiments. Subfigure (a) illustrates the malicious voting
power that can violate the liveness property or even the safety property of the
consensus in a single shard. Subfigure (b) shows that the number of affected
transactions increases when a single shard is continuously under attack.

the consensus process. We denote the nodes controlled by
attackers as malicious nodes.

Motivation. In PBFT consensus [11], on the one hand, if
the voting weight of malicious nodes exceeds 1/3, malicious
nodes can violate the liveness property. On the other hand,
when their voting weight surpasses 2/3, the safety property
of the consensus will be violated. In sharded blockchains,
since a single shard only consists of a small proportion of the
entire blockchain nodes, it becomes easier to attack blockchain
shards from the standpoint of malicious nodes [7], [12].

We use Ethereum historical data to simulate how mali-
cious nodes threaten the safety and liveness properties of a
blockchain sharding system. Assuming that all blockchain
shards exploit PBFT protocol as their local consensus,
Fig. 1(a) illustrates that as the number of shards increases,
the voting power required by malicious nodes to violate the
consensus of a shard declines. This observation implies that
the malicious nodes’ attack threshold drops following the
growing number of blockchain shards. When other consensus
protocols are adopted in blockchain shards, similar trends can
be observed [7]. Fig. 1(b) shows that as a shard continually is
being under attack, the number of transactions directly affected
within the entire system keeps increasing. Due to the existence
of cross-shard transactions, when malicious nodes can violate
the safety of a specific shard and arbitrarily modify its ledger
state, the states in other shards will be impacted, too. These
malicious behaviors bring a significant threat to the overall
security of the sharding blockchain.

To ensure the security of sharded blockchains, previous
studies [7], [8] have adopted shard reconfiguration. The idea
behind shard reconfiguration is to periodically shuffle the



consensus nodes in all shards randomly, thereby preventing
malicious nodes from concentrating in a particular shard.
However, since those nodes scheduled to migrate to other
shards need to duplicate the local state from their new shards
during the shard reconfiguration, shuffling nodes across shards
would introduce significant overhead of state duplication. As
a result, the frequency of shard reconfiguration is set typically
not high, often in days, according to the literature [6]. This
long period of shard reconfiguration provides opportunities for
malicious nodes. Thus, this paper raises the following research
question (RQ).

RQ: Is it possible to significantly reduce the overhead of
shard reconfiguration, such that the sharded blockchain system
can always maintain a high level of security by performing
frequent shard reconfiguration?

To answer this question, this paper presents a two-layer
blockchain sharding system named DecoupleChain, which
consists of two blockchain layers, namely Layer1 and Layer2.
In Layer2 of DecoupleChain, we implement a new state shard-
ing by decoupling the storage and consensus functionalities.
Specifically, we divide all blockchain nodes into two categories
of shards, i.e., storage shards and consensus shards. The
consensus shards are stateless, which means that they do not
store state ledger data. When a consensus shard needs to
verify a transaction, the shard will retrieve the target account’s
state and its associated validity proof from the corresponding
pairwise storage shard. When a bunch of transactions complete
execution in the consensus shard, the shard sends a new block
to the storage shard, which then stores the state of the related
accounts associated with these transactions.

The Layer1 of DecoupleChain employs a trusted third-party
public chain (e.g., Ethereum). The consensus shards of Layer2
store the metadata of each block in a smart contract deployed
in the Layer1 chain. When a node in Layer2 needs to verify
the validity of an account state, a transaction, or a block, it
can retrieve the relevant metadata from this smart contract.
The Layer1 blockchain can also offer randomness sources for
some synchronization actions (such as shard reconfiguration)
in Layer2.

Using the proposed two-layer architecture, consensus shards
can perform low-overhead frequent reconfiguration, which can
improve the robustness and security of the blockchain sharding
system. Our study makes the following contributions.

• Originality. We propose a two-layer blockchain system,
named DecoupleChain, which enables low-overhead fre-
quent shard reconfiguration to enhance the security of
blockchain sharding.

• Methodology. DecoupleChain decouples the storage and
consensus by delegating them into different shards. We
then proposed a correctness-verification method for vali-
dating accounts’ state and transaction receipts, as well as
a timeout mechanism aiming to ensure the atomicity of
transaction execution.

• Implementation. We have implemented a prototype of
DecoupleChain and conducted experiments using real-
world transactions on multiple physical machines. The

results indicate that even under frequent reconfiguration,
DecoupleChain’s throughput is hardly affected. In con-
trast, Ethereum’s TPS decreases to 75% or even lower.

II. RELATED WORK

A. Security of Blockchain Sharding

Although the security of shards can be enhanced through
reconfiguration methods [4], Conflux [12] reports that recon-
figuration can be only conducted at extended intervals, due to
the substantial overhead. This provides attackers with ample
time to concentrate their efforts on a specific shard. Rapidchain
[6] introduces the principle of limited cuckoo reconfiguration,
which reallocates new nodes and retains some old nodes.
This can effectively prevent the attacker’s leave-rejoin attack.
However, its defense against bribery attacks is limited and can
only handle slowly-adaptive adversaries [13], [14]. Moreover,
the reconfiguration process is controlled by the reference
committee, posing a risk of centralization. tMPT [15] takes
the advantage of the presence of hot accounts in blockchain
transactions. During reconfiguration, it only synchronizes the
states of hot accounts, thus reducing the synchronization
overhead for nodes. However, during the transaction execution
by nodes, the missing account states must rely on witness
shards for execution provision. Furthermore, these witness
shards also control the reconfiguration process, leading to a
risk of centralization. CoChain [16] incorporates the discovery
and the handling of malicious shards on top of regular shard
reconfiguration. In its system, each shard is supervised by a
so-called CoC Group comprised of multiple shards. The CoC
conducts cross-shard consensus on the intra-shard consensus
results of a shard. If this shard is found to be malicious, it is
replaced. However, when malicious nodes manipulate over 2/3
of a shard’s nodes, CoC will fail to detect this situation. Ad-
ditionally, this cross-shard consensus involves more complex
communication and synchronization mechanisms, making the
system hard to scale.

Distinct from reconfiguration-based solutions, Monoxide [7]
introduces Chu-ko-nu mining, in which each miner is no
longer confined to a specific shard but can participate in
block production across multiple shards, thereby ensuring
shard security. However, this design increases the resource re-
quirements for miners, making it unfavorable for low-resource
nodes to participate. Thus, this manner degrades the degree of
the blockchain’s decentralization [17].

In summary, these approaches either have not properly
addressed the security issues of sharded blockchains, or they
have sacrificed some scalability or decentralization in the
process of security enhancement.

B. Decoupling Blockchain Functions

Modular blockchain [18] proposes the idea of decoupling
various functions of a blockchain. After decoupling, each
layer implements a part of the blockchain’s functionality,
such as data availability, transaction execution, consensus, etc.
The advantage of modularization is that different modules
can perform their specific duties, providing higher flexibility,
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scalability, and maintainability. There are also related works
on decoupling shard functions in sharded blockchains. For
example, Jenga [19] selects some nodes from multiple shards
to construct an execution channel, instructing them to execute
transactions that invoke smart contracts. This design elimi-
nates the cross-shard communications during state acquisition,
thereby improving system efficiency. W3Chain [20] partitions
the correctness of transaction data into block correctness and
chain consistency.

In contrast, we propose a design that decouples shard
consensus and shard storage. In our design, the stateless
consensus shards can be frequently reorganized to guarantee
consensus security.

III. PRELIMINARIES

A. Layer1 and Layer2

A Layer2 blockchain refers to a blockchain that works
through collaboration with a mainstream blockchain such
as Ethereum [3] or Solana [21]. These major mainstream
blockchains are often referred to as Layer1 chains or main
chains. Layer2 blockchains offer faster transaction process-
ing and lower transaction fees than Layer1 blockchains.
Thus, Layer2 solutions can reduce the burden in the Layer1
blockchain in terms of transaction handling. During the execu-
tion of a Layer2 blockchain, a summary of Layer2 transactions
will be submitted to Layer1 periodically for a permanent
record.

In contrast to the goal of improving throughput [22], we
introduce a two-layer architecture in DecoupleChain primarily
for data verification. Since storage shards are not frequently
reconfigured in our design, the data they provide may not be
fully trusted. To address this issue, a trusted blockchain is
implemented in Layer 1, which is responsible for storing and
retrieving block metadata. Any node in Layer 2 can verify the
integrity and validity of the data with the support of Layer 1.

B. Merkle Patricia Trie

Merkle Patricia Trie (MPT) is a data structure proposed by
Ethereum and widely adopted by many blockchains nowadays.
It can store key-value pairs, providing the holy grail of
O(log(n)) efficiency for inserts, lookups, and deletes. Fig. 2
is an example of using MPT to store accounts. MPT contains
three types of nodes: extension nodes, branch nodes, and leaf
nodes. Each node stores the hash value of its child nodes.

In the context of blockchains, MPT is commonly used to
serve the following data structures: state tree, transaction tree,
and receipt tree.

Due to the unique properties of MPT, when there is a
need to verify whether the balance of a particular account is
correct, validators do not need to know the complete state tree.
Instead, they only need a brief Merkle Proof from a storage
node that possesses the complete state tree. The Merkle Proof
corresponding to an account consists of the root node of the
state tree, the leaf node where the account resides, and the
other nodes along the proof path between the root and leaf
nodes. For instance, the Merkle Proof for account c573135 is

c51d337
Keys          

c573135
c573d21
c5c54ab

Simplified World State ROOT: Extension Node

Leaf Node
key-end value

54ab 4

Branch Node

1
Values     

2
3
4

Leaf Node
key-end value

35 2

0 1 ... 7 ... c ... value
null hash(C) ... hash(D) ... hash(E) ... null

Extension Node
shared key next

3 hash(F)

Branch Node

Leaf Node
key-end value

21 3

Leaf Node
key-end value

d337 1

shared key next
c5 hash(B)

Hash Function
KECCAK256（）

0 1 ... d ... value
null hash(G) ... hash(H) ... null

A

B

C D E

F

G H

Fig. 2. An example of using MPT to store account states in a blockchain.
Letters A, B, C, D, · · · , H labeled in the upper left corner of each square serve
as identifiers for the nodes of MPT.

[A, B, D, F, G], while for account c5c54ab, the Merkle
Proof is [A, B, E]. Upon receiving the Merkle Proof, the
validator starts hashing from the leaf node upward through
each node on the proof path and compares each hash with
those in the Merkle Proof. If any hash does not match, the
verification fails. If the hash of the root node matches the one
in the Merkle Proof, the verification is successful.

MPT can be used to prove both the existence and non-
existence of a given account. For example, [A, B, C] can
prove that an account with the key c51d336 does not exist;
otherwise, C would not be a leaf node. We refer to the Merkle
Proof that demonstrates the existence of a certain account (or a
transaction) as proof of inclusion. Similarly, the Merkle Proof
that demonstrates the non-existence of a certain account (or a
transaction) is referred to as proof of exclusion.

Given the non-reversibility of hashes, and provided that the
root of the state tree is known, a Merkle Proof cannot be
made up. As a result, any validator can quickly verify the
state of an account with only a minimal amount of data. In
the same manner, a Merkle Proof can be used to verify whether
a transaction has been packed into a block or whether it has
been executed successfully.

DecoupleChain employs MPT for its state tree, transaction
tree, and receipt tree.

IV. SYSTEM DESIGN OF DECOUPLECHAIN

A. System Overview

The architecture of the proposed DecoupleChain system is
shown in Fig. 3. DecoupleChain consists of two layers, each
running its own blockchain.

The blockchain in Layer2 is a dedicated sharded blockchain
consisting of multiple shards, with each shard running the
PBFT consensus locally. Different from the traditional state
sharding, we decouple the two functions of traditional shards,
i.e., storage and consensus, and assign them to two types of
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Fig. 3. An overview of the proposed two-layer DecoupleChain system. The
operation steps are depicted as follows. Step 1⃝: Clients submit/broadcast
transactions. Step 2⃝: A consensus shard requests account states from a
storage shard. Step 3⃝: A storage shard returns states and Merkle proofs.
Step 4⃝: The consensus shard runs PBFT consensus to generate a new block
and returns receipts to clients. Step 5⃝: The consensus shard elects a subset
of nodes through VRF [23]. Step 6⃝: Time beacon (abbr. as TB) is extracted
from the block and multi-signed by the elected nodes, then relays to Layer1.
Step 7⃝ Light node in Layer1 proposes a transaction to record that TB on
the smart contract. Step 8⃝: Light nodes wait until the TB is confirmed, then
update TB to the nodes of Layer2 that subscribe to it. Step 9⃝: The storage
shard commits the block on the blockchain and finalizes ledger states to the
state tree.

shards, respectively. Storage shards are responsible for storing
account states, blocks, and other data. Consensus shards handle
transaction verification, packaging, and consensus. Each con-
sensus shard is bound to a storage shard. This means that the
consensus shard processes transactions related to the accounts
in the associated storage shard. For easy understanding, the
mutually bound consensus and storage shards share the same
ID.

The blockchain in Layer1 can be any reliable third-party
blockchain, such as Ethereum [3]. A dedicated smart con-
tract (named TBStore) is deployed in Layer1, and nodes
within the Layer2 blockchain interact with Layer1 through
this contract TBStore. To directly obtain the latest state of
the contract or initiate transactions to invoke the contract,
operator of each Layer2 node can choose to set up a light
node in the Layer1 blockchain (this method is recommended).
Alternatively, this task can be delegated to a trusted third-party
node, which forwards messages. In addition, the system also
includes several clients, responsible for initiating user trans-
actions and returning the results of transaction execution to
clients. In cross-shard transactions, clients are also responsible
for monitoring an expired transaction or initiating transaction
rollback.

The operations of DecoupleChain system mainly consists
of an initialization stage, an execution stage, and a shard
reconfiguration stage. The latter two stages are able to alternate
repeatedly. A detailed explanation of these stages is as follows.

B. Initialization Stage

During the system’s initialization stage, nodes in Layer2
are shuffled by invoking a common initial random source and
thus allocated to different shards. Once the initial shards are
constructed, the administrator collects the signature addresses
of the validator nodes in each consensus shard. Then, the
administrator deploys the smart contract TBStore (contract
1) in Layer1, storing these signature addresses as the contract’s
initial parameters. The use of these addresses is introduced in
IV-E. It’s essential to emphasize that the administrator is a
centralized role that only exists during system initialization.
Once the contract is deployed, the subsequent system opera-
tions no longer requires the administrator.

C. Transaction Execution Stage

After the system initialization is completed, the system
begins to process transactions. A token-transfer transaction
can be simply represented by tx = ⟨Sender,Recipient,Value⟩,
where Sender represents the account address of the transaction
payer, Recipient represents the payee’s account address, and
Value represents the number of tokens transferred. Let Φ
denote the mapping rule from the account address to the
storage shard ID. When Φ(Sender) = Φ(Recipient), i.e., both
the sender and recipient addresses are within the same storage
shard, then the transaction is referred to as an intra-shard
transaction. Otherwise, it’s called a cross-shard transaction.
We will introduce the execution process of intra-shard trans-
actions later on, and the execution process of cross-shard
transactions is elaborated on in Section V.

Let’s consider the handling of an intra-shard transaction
denoted as txintra = ⟨S1, R1, V1⟩. The storage shard with ID
Φ(S1), is labeled as SShard1, and the consensus shard is
labeled as CShard1. The process from initiation to confirma-
tion mainly includes the following phases.

• Broadcast Phase 1. Clients submit/broadcast transac-
tions, including txintra, to the entire network. CShard1
filters out txintra from these transactions and places it in
the transaction pool, shown as step 1⃝ in Fig. 3.

• Query Phase. After queueing for some time, txintra is
selected from the transaction pool. CShard1 then sends
a getState request to SShard1, inquiring about the
latest state of the accounts related to the current transac-
tion. Upon receiving the request, SShard1 fetches the
respective account state from its local state tree, along
with the Merkle Proof that confirms the validity of this
state. Both the account state and the Merkle Proof are
then sent to CShard1, shown as step 3⃝ in Fig. 3.

• Verification and Consensus Phase. Upon receiving the
account state and the accompanying Merkle Proof from
SShard1, CShard1 validates its accuracy in conjunc-
tion with the time beacon (described in the next sec-
tion) stored locally. Concurrently, CShard1 verifies the
signature of each transaction. Once the verification is
confirmed as correct, CShard1 processes the transac-
tion and packages it into a block, denoted as β. This
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block then undergoes PBFT consensus, shown as the
operation step 4⃝ in Fig. 3. Upon executing the trans-
action, the block β contains the new state tree root hash,
termed as newTrieHash. Utilizing the properties of MPT
[15], CShard1, with just the received account’s Merkle
Proof and the updates to these accounts, can derive the
newTrieHash. CShard1 sends β to SShard1, and sends
the receipt for txintra to the client who initiates txintra.

• Multi-signature Phase. After consensus is reached,
CShard1 internally selects several signers through the
VRF [23] algorithm to multi-sign the time beacon of β. A
block’s time beacon includes its meta-information, such
as block height, shard ID, block hash, state tree root hash,
transaction tree root hash, and receipt tree hash. The time
beacon obtained after multi-signing is denoted as tbβ .
The operations in this phase are shown as steps 5⃝ and
6⃝ in Fig. 3.

• Broadcast Phase 2. CShard1, using the light node
operating in Layer1, initiates a transaction (denoted as
Tβ) in the Layer1 chain to call the TBStore contract.
The content of Tβ is to store tbβ in that smart contract.

• Confirmation Phase. Under our two-layer blockchain
design, the Layer1 chain provides a time reference for
Layer2. Suppose that Tβ is packaged into block B in the
Layer1 chain. Only when B is confirmed in Layer1, does
Tβ get confirmed. Subsequently, both β and txintra are
confirmed. When the light node in Layer1 monitors the
confirmation of Tβ , it immediately sends a confirmation
message Confirmβ to Layer2, shown as the operation
step 8⃝ in Fig. 3. The structure of Confirmβ can be
simplified as ⟨tbβ , confirmHeight⟩, where confirmHeight
refers to the height of the block in Layer1 in which
Tβ is packaged. Note that, the operator of each Layer2
node can either deploy a light node on Layer1 or rely
on trusted, established third-party nodes. Thus, they can
check if the block is confirmed in Layer1. Upon receiving
Confirmβ , the client in Layer2 can use the transaction
tree root hash and the receipt tree root hash contained
within to validate the receipt of txintra, utilizing the
Merkle Proof. Once the validation passes, the client
returns the execution result of txintra to the end-users.
The shard nodes in Layer2, upon receiving Confirmβ ,
store it locally and use it for subsequent validations.

• Storage and Update Phase. When the Verification and
Consensus Phase is completed, CShard1 sends β to
SShard1. SShard1 will place β in a temporary stor-
age area, waiting for its confirmation. Upon receiving
Confirmβ , SShard1 first validates β, ensuring that
the generated state tree root hash and other information
match those in Confirmβ . Once validated successfully,
SShard1 adds β to the blockchain and updates the state
tree accordingly, as shown in step 9⃝ of Fig. 3.

D. Shard Reconfiguration Stage

After several rounds of execution, the system triggers the
shard reconfiguration stage. Different from the centralized

shard reconfiguration presented in Rapidchain [6] and tMPT
[15], we propose a decentralized shard reconfiguration. When
the confirmed height of the Layer1 chain reaches a certain
configurable threshold since the previous reconfiguration, all
consensus shards detected this change stop producing new
blocks, and begin the reconfiguration process. We denote the
configurable threshold as reconfiguration interval. We then
explain the stages of the reconfiguration process. To make it
easy to understand, we let n ∈ N+ represent the number of
consensus shards. Thus, the consensus shard list before and af-
ter reconfiguration can be denoted by {cs1, cs2, . . . , csn}, and
{cs′1, cs′2, . . . , cs′n}, respectively. The reconfiguration process
is depicted as follows.

• Suspending consensus. When receiving the reconfigura-
tion signal from Layer1, shards will shut down and stop
producing new blocks.

• Determining the new consensus shards. Taking the hash
of the most recently confirmed block in the Layer1 chain
as input, each node runs the VRF algorithm to obtain a
verifiable random number and maps this number to an ID.
This ID indicates the destination consensus shard that this
node is designated. Let the shard the node was located
before reconfiguration be csi, and the destination shard
after reconfiguration be cs′j (1 ≤ i, j ≤ n).

• Establishing connection. When obtaining the VRF re-
sult, the node sends the result to its neighbor nodes, which
will forward it to other nodes and consensus shards. At
the same time, the node collects information about the
nodes assigned to cs′j and establishes new connections
with them.

• Synchronizing data. cs′j requests data from the nodes in
csj . The primary data that needs to be synchronized is
the transaction pool data of csj .

• Resuming consensus. Once the node has synchronized
the data and established connections with other nodes
within cs′j , it resumes the consensus process.

E. Smart Contract TBStore

In this subsection, by presenting the logic of the smart
contract TBStore, we show how Layer1 cooperates with
Layer2 in our system.

The contract TBStore includes three publicly callable
methods, namely GetTB, AddTB, and AdjustAddrs. The
pseudocode is shown in Contract 1. The method GetTB
takes two parameters, i.e., the shard ID and block height, and
returns the time beacon (abbr. as TB) stored in the contract.
The method AddTB verifies and stores a new time beacon.
As described in IV-C, to ensure the validity of the time
beacon stored in the contract, the consensus shard first needs
to select several nodes through VRF (each node corresponds
to a signature address). Next, the consensus shard has these
nodes signing the time beacon and finally aggregates them
before initiating a transaction to call the contract. Therefore,
in addition to the time beacon, the parameters received by
addTB also include the VRF results of the selected nodes
and their signatures.
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Smart Contract 1: TBStore
1 tbs : map⟨uint32,map⟨uint64,TB⟩⟩
2 addrs : map⟨uint32,array[address]⟩
3 requiredCount : uint32
4 Function getTB(shardID, height):
5 return tbs[shardID][height]

6 Function addTB(tb, signatures, vrfResults, signers):
7 validCount ← 0
8 for i = 0 to len(signatures)-1 do
9 vrf ← vrfResults[i]

10 sig ← signatures[i]
11 if signers[i] not in addrs[tb.shardID] then
12 continue
13 if ! VERIFYVRFRESULT(vrf, signers[i]) then
14 continue
15 if ! VERIFYSIGNATURE(sig, signers[i]) then
16 continue
17 validCount ← validCount+1

18 if validCount ≥ requiredCount then
19 tbs[tb.shardID][tb.height] ← tb

20 Function adjustAddrs(shardID, vrfResults,
signers):

21 . . . // Verify vrfResults and update addrs

In the method addTB, for each signer, the contract first
verifies that the signer’s signature address is stored in the
contract. Secondly, it checks the validity of the VRF result
(i.e., whether the address is qualified as a signer for the time
beacon) and then verifies the correctness of the signature.
When the verification passes, the count of valid signatures
is incremented. If the count of valid signatures reaches the
required number, the verification passes, and the time beacon
is stored in the contract. If not, the storage of the time beacon
fails.

To prevent Sybil attacks [24], where a malicious node
may use addresses not belonging to any consensus shard
to sign invalid time beacons, the contract maintains a data
structure that maps addresses to consensus shard IDs. If an
attacker tries to sign a time beacon with a new address or
one from a different consensus shard, the address will not
pass the contract’s verification process. When a consensus
shard reconfiguration occurs, before submitting time beacons
to the Layer1 chain, the newly formed consensus shard must
update the mapping of addresses to consensus shard IDs in
the contract. This is done by calling the contract’s method
AdjustAddrs. The requiredCount in the contract is a
threshold that can be set manually to a reasonable number.
When the number of valid signatures meets or exceeds the
value of the threshold, there is a very low probability that the
time beacon is invalid.

V. HANDLING CROSS-SHARD TXS

As the global account state is divided and distributed
into different shards, the transactions that their payer and
payee accounts are not located in the same shard are called
cross-shard transactions. A cross-shard transaction needs to
be processed in both the payer’s and payee’s shards, with
corresponding debit and credit operations performed. In this
section, we introduce the processing mechanism of cross-shard
transactions in DecoupleChain. The processing mechanism
includes i) the process for successful transaction execution and
ii) strategies for handling expired transactions.

A. Process of Successful Transaction Execution

We denote a cross-shard transaction as txcross = ⟨A,C, V ⟩,
where A is the payer account, C is the payee account, and
V is the volume of tokens transferred. Denoted by Φ(A) =
src and Φ(C) = dest, the successful execution of txcross is
illustrated in Fig. 4.

The execution of txcross can be roughly divided into two
phases. The first phase involves executing the debit transaction
t̄xcross within CShardsrc and confirming it in the Layer1
chain. The second phase involves executing the credit trans-
action t̂xcross within CSharddest and confirming it in the
Layer1 chain. Each phase is similar to the process of executing
an intra-shard transaction. Note that, both t̄xcross and t̂xcross
are initiated by the client, and in this process, CShardsrc and
CSharddest do not need to communicate directly.

B. Handling Expired Transactions

The atomicity of a cross-shard transaction, say txcross, im-
plies that either both t̄xcross and t̂xcross are confirmed, or they
both fail to be confirmed. The cross-shard transaction txcross
is considered successful only when t̂xcross is confirmed.
However, due to the complexity of the system, it is possible
that t̂xcross still fails to be confirmed when t̄xcross has been
confirmed for a long time. This phenomenon threatens the
execution atomicity of txcross. To better guarantee transaction
atomicity, we introduce a timeout mechanism for dealing with
cross-shard transactions. The basic idea behind such a timeout
mechanism is that, if t̄xcross has been confirmed and after a
certain period of time, t̂xcross still remains unconfirmed, the
transaction is considered expired. When a transaction expires,
there is an option to roll back t̄xcross. The timeout mechanism
is specified as follows.

Timeout mechanism. When a client initiates t̂xcross, it
records the confirmation height of CSharddest as k ∈ N+

(can be retrieved from the latest time beacon of CSharddest)
and sets a transaction timeout timer as s ∈ N+. If the
confirmation height of CSharddest reaches k + s and the
client has not received a receipt for t̂xcross from CSharddest,
the client can query CSharddest. When t̂xcross has been
packed before the block at height k + s (including k + s),
CSharddest returns an proof of inclusion to the client. The
client can then follow the normal process to verify the proof
and complete the transaction. Otherwise, CSharddest returns
a proof of exclusion, indicating that the associated transaction
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Fig. 4. The execution process of a cross-shard transaction (tx) in the proposed DecoupleChain system.

has expired. The expired transactions will be directly discarded
from the transaction pool by consensus shards.

Upon receiving the proof of exclusion, the client can resend
t̂xcross. To increase the possibility of t̂xcross being included
in a block, the client may pay a transaction fee higher
than normal. Alternatively, the client can choose to initiate a
Rollback transaction. This transaction is the inverse of t̄xcross
and aims to restore the funds to account A. Fig. 4 illustrates
the rollback handling of a transaction exactly when it expires.
Rollback transactions are prioritized by consensus shards to
ensure that the transaction can be rolled back as quickly as
possible.

VI. SECURITY ANALYSIS

A. Security of Shard Reconfiguration

When the shard reconfiguration has just been completed,
the system is in a relatively secure state, where honest nodes
constitute the majority within each consensus shard. To pre-
cisely measure the security of the system immediately after
reconfiguration, we calculate the probability pfail that at least
one consensus shard may have a proportion of malicious nodes
exceeding the tolerable threshold.

Assuming that the maximum tolerable proportion of mali-
cious nodes within a consensus shard is d ∈ R+, 0 < d < 1,
the proportion of malicious nodes across all nodes in the
system is α ∈ R+, 0 < α < 1, the number of consensus
shards is S ∈ N+. There are a number n ∈ N+ of nodes in
each consensus shard. Then, according to [25], we have

pfail =

[
xαnS

] (∑dn−1
i=0 (ni )x

i
)S

(
nS
αnS

) . (1)

By setting d to 1/3 and α to 20%, we can obtain the
variation of pfail versus different S and n. As the number
of shards increases, the size of the consensus shard needs

to grow slightly to ensure that pfail remains below 10−6. For
example, with 200 shards, a consensus shard size of 340 nodes
would suffice. We argue that when this condition is met, the
system achieves a sufficient level of security. Furthermore, if
d decreases or α increases, this security condition can still
be maintained by increasing the size of the consensus shard
accordingly.

B. The Effect of Reconfiguration Interval

Even if the consensus shard is relatively secure immediately
after reconfiguration, attackers can increase their voting weight
in that shard by interfering or dominating the nodes within the
shard through bribery attacks [9], [10]. When malicious nodes
control a consensus shard, they can forge information and
launch DDoS and other attacks. We leave the study of specific
attack methods on consensus shards for our future work. This
paper only uses a simplified attack model to analyze the effect
of reconfiguration intervals.

Similar to tMPT [15], we assume the process in which
honest nodes in a consensus shard turn into malicious ones
follows a Poisson process. The rate λ ∈ R describes the
average speed of nodes’ corruption, i.e., honest nodes turn into
malicious ones following a Poisson process with the rate λ.
Considering the time required for the number of malicious
nodes to grow from 0 to n/3, we can view the waiting
time (denoted as t) for the number of malicious nodes to
reach n/3 as the time it takes for n/3 independent random
events to occur. According to the relationship between the
Poisson process and the gamma distribution, t follows a
gamma distribution with parameters k = n/3 and λ. Thus,
the probability density function of the gamma distribution is

f(t; k, λ) = f(t;n/3, λ) =
λn/3t(n/3)−1e−λt

(n/3− 1)!
. (2)

Thereby, the expected waiting time is
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E(T ) =

∫ ∞

0

t · λ
n/3t(n/3)−1e−λt

(n/3− 1)!
dt =

n/3

λ
. (3)

We can take T = n
3λ as the reconfiguration interval time

(assuming we can estimate the rate λ). As λ increases, i.e., the
attacker’s speed becomes faster, the system needs to shorten
the reconfiguration interval to maintain security. When the
reconfiguration interval is reduced to a certain length, the
traditional sharding protocol cannot continue due to its huge
reconfiguration overhead. In contrast, our consensus shard can
be reconfigured quickly and at a low cost as needed due to its
stateless feature.

C. Security of Storage Shards

DecoupleChain only reshuffles the consensus shards and
does not reshuffle the storage shards, which may raise some
concerns. Our view is that storage shards lack the motivation
to act maliciously, as there is no benefit to gain from possible
malicious actions. When storage shards intentionally return
incorrect account states to the consensus shards, those incor-
rect states will be rejected due to a failure in the verification
phase. Future work will study this aspect further and propose
corresponding solutions, such as the detection and replacement
of malicious nodes in storage shards.

VII. EXPERIMENTS

A. Prototype Implementation

To evaluate the performance of DecoupleChain, we imple-
mented a prototype of our system using Go with around 15,000
lines of code. We then deployed the TBStore contract on
a private Ethereum blockchain, which serves as the Layer1
chain for DecoupleChain. We collected historical blocks from
Ethereum that include 1.92 million token-transfer transactions
that occurred from June 7, 2022, to June 14, 2022. We then
replay those transactions in our prototype system. Specifically,
we first read all the accounts associated with these transactions
and divide them into different shards according to the last
few bits of their account addresses. Then, we inject a certain
number of transactions per second into clients, simulating the
users’ behavior of submitting transactions in real time. When
the transaction injection is complete, we read the transaction
execution results from the log files.

B. Experiment Settings

Testbed. We conducted our experiments on our local 9
high-performance workstations. Each workstation is equipped
with an Intel(R) Xeon(R) W-2150B CPU @ 3.00 GHz, which
consists of 10 physical cores and supports 20 threads in total.
Additionally, each machine is equipped with 64 Gigabytes
(GB) of memory.

Basic Parameters. To set a relatively reasonable block
capacity and block interval, we investigated the parameter
settings of classic papers, which are shown in Table I. Ref-
fering to their settings, we set the block interval to 4 seconds
and the block capacity to 1000 transactions. Thus, the highest
theoretical throughput that a single shard can achieve is 250

TABLE I
THE SETTINGS OF SEVERAL SHARDING SYSTEMS AND OUR SYSTEM.

System Monoxide [7] BrokerChain [8] tMPT [15] Ours

TPS per shard 15∼20 62.5 250 250
Block interval 15s 8s 4s 4s

transactions per second (TPS). The number of nodes in each
shard is initially set to 16.

Baselines. We choose the following three methods as the
baselines to compare with the performance of DecoupleChain.
The Full sync (Ethereum) method [3] requires synchronizing
all block data from the genesis block to the latest block,
while the Fast sync (Ethereum) method [3] only synchronizes
recent blocks and the state tree. The tMPT method [15]
compresses the state tree based on active accounts, and nodes
must synchronize the compressed state tree.

C. Overall Metrics of DecoupleChain

We first measure the two most critical performance metrics
of DecoupleChain, i.e., TPS and transaction confirmation
latency. The results are shown in Fig 5. TPS refers to how
many transactions the system can process per second, and
transaction confirmation latency refers to the time it takes
for a transaction to be confirmed by the Layer1 chain since
a client’s submission. The experimental results in Fig. 5(a)
show that as the number of consensus shards increases, the
throughput increases accordingly. When we focus on the
ratio of actual TPS over the theoretical maximum TPS, we
observe a similar trend in Fig. 5(b) to the average latency,
which can be explained as follows. As the number of shards
grows, the proportion of cross-shard transactions rises, leading
to increased average transaction confirmation latency and a
reduced TPS ratio. However, when the shard count reaches
32, the ratio of cross-shard transactions stabilizes. At this
point, the load balancing effect of multi-sharding becomes
more apparent, such that the average transaction latency drops
and the TPS ratio increases.

We also present the workload distribution across each con-
sensus shard in Fig. 5(c). Note that a cross-shard transaction
generates one individual unit of transaction workload in each
of the two stages of its execution. In terms of workload per
shard, our results are somewhat similar to those of Monoxide
[7]. In Monoxide, a shard node often needs to participate
in block production for multiple shards, thus bearing the
workload of several shards. In contrast, in DecoupleChain,
each node only handles the transaction workload of the shard
where it is located.

D. How System Parameters Influence Performance

1) Impact of transaction inject speed on TPS: To evaluate
the system’s performance under varying transaction arrival
rates, we test DecoupleChain by starting with a low trans-
action injection speed and gradually increasing the volume of
transactions injected per second. Our empirical study shows
that when the transaction injection rate is set to the maximum
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Fig. 5. Throughput, transaction confirmation latency, and transaction workload distribution of the DecoupleChain system.
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transaction processing capacity of the entire system (i.e., the
maximum theoretical TPS of a single shard multiplied by the
number of shards), the system can achieve a TPS close to the
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Fig. 9. Comparing with Eth-sharding under frequent shard reconfigurations.

optimal level. We refer to this injection rate as the Standard
Injection Speed. The results are shown in Fig. 6(a). When
the transaction injection rate is either too low or too high,
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the system’s throughput cannot achieve the best. However,
when the condition of Standard Injection Speed is met, the
throughput of DecoupleChain shows the best.

2) Impact of timeout timer on rollback rate: To provide a
reference for setting the timeout timer of transactions (defined
in V-B), we study the variation in the transaction rollback
rate when different timeout lengths of timers are set. When a
transaction expires, the client initiates a rollback transaction.
The timeout timer’s unit is the block interval of the consensus
shard. Let r ∈ R (0 < r < 1) denote the transaction
rollback rate, a ∈ N+ the number of successfully executed
transactions, and b ∈ N+ the number of successfully rolled-
back transactions, then r = b

a+b . The results are shown
in Fig. 6(b). The observation shows that a longer timeout
timer induces a lower transaction rollback rate, which is
consistent with our expectations. Clients can flexibly adjust
the transaction timeout timer according to customized needs
and choose a relatively reasonable range (e.g., 12–18 or more
than 18 block intervals).

3) Impact of bandwidth on synchronization latency: We
compare DecoupleChain to three other baselines (i.e., Full
sync [3], Fast sync [3], and tMPT [15]), focusing on the data
synchronization phase during shard reconfiguration, which
represents the key improvement of DecoupleChain. The results
in Fig. 6(c) show that under different bandwidth settings,
DecoupleChain achieves the lowest synchronization latency
during reconfiguration. This is because during shard recon-
figuration, nodes in DecoupleChain only need to synchronize
the transaction pool data, whereas the other three methods
require the synchronization of additional content in addition
to the transaction pool. In the following experiments, we set
the bandwidth of each node to 12.5 Mbits/s and measure the
latency of the entire configuration process.

E. Reconfiguration Latency

We compare the shard reconfiguration latency of different
methods under the same settings in Fig. 7(a) and Fig. 7(b).
DecoupleChain achieves the shortest overall reconfiguration
latency, the median reconfiguration latency of DecoupleChain
is 35% lower than tMPT and 67% lower than Fast sync. The
large fluctuations in Fig. 7(a) are primarily due to significant
variations in the latency of the shutdown phase during each
shard reconfiguration explained in next subsection. Addition-
ally, since the accumulated blockchain data can increase over
time, the latency of the Full sync and Fast sync methods will
increase as the data size grows, while the tMPT method and
DecoupleChain remain relatively stable. We also measured the
impact of different numbers of shards deployed on the testbed
machines. The results in Fig. 7(c) show that the reconfiguration
latency increases slightly as the number of consensus shards
grows. This is mainly because the shutdown duration becomes
longer as more shards exist in the system.

F. Zooming in Reconfiguration Process

To help better understand the large fluctuations of reconfig-
uration latency shown in Fig. 7(a), we use Full sync [3] as

the data synchronization method to zoom in the shard recon-
figuration process. In Fig. 8, we see that during this process,
some consensus shards shut down faster than that under other
shards because other shards may still be generating a new
block or multi-signing a time beacon, leading to a dynamic
decrease in the number of active shards. When recovering
consensus under Full sync, some shards synchronize data and
rebuild connections more quickly than those slow shards. In
our settings, the shutdown phase does not exceed one block
interval (i.e., 4 seconds) by too much. Since the redistributing
phase can be pipelined with the shutdown phase, it will be
completed shortly after the shutdown phase. The latency of
the recovery phase depends on the synchronization method
used and the volume of data.

G. Comparison with Other Sharding System

To provide stronger evidence that DecoupleChain outper-
forms other sharding blockchains, we also implemented a pro-
totype of the sharding system on top of Ethereum (shortened
as Eth-sharding) and compared its reconfiguration data volume
and throughput with DecoupleChain. We set the number of
shards to 4 for each system, with 16 nodes for each shard, and
triggered reconfiguration every three block intervals (around
12 seconds). The results shown in Fig. 9 demonstrate that
DecoupleChain has a lower volume of synchronization data
during reconfiguration compared to Eth-sharding. As the sys-
tem continues to run and the data size increases, the advan-
tages of DecoupleChain become more obvious. Furthermore,
while Eth-sharding’s throughput is significantly influenced by
frequent reconfigurations, DecoupleChain remains stable TPS.

VIII. CONCLUSION

DecoupleChain is a two-layer blockchain sharding system
that decouples traditional sharding consensus from storage,
enabling frequent reconfigurations and thereby enhancing the
security of the blockchain sharding system. DecoupleChain
delegates the functionalities of storage and consensus into dif-
ferent shards. To ensure the atomicity of transaction execution,
we proposed a correctness-verification method for validating
accounts’ state and transaction receipts, as well as a dedicated
timeout mechanism. Experimental results demonstrate that De-
coupleChain not only outperforms existing sharding systems
in terms of reconfiguration overhead but also maintains high
performance even under frequent shard reconfigurations.

In our future work, we plan to make DecoupleChain a real-
world infrastructure for future public blockchains.
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