Blogs & News

Resilient Routing for the Control-Channel of Software-Defined Networks – A Revisit of a JSAC Article

By Huawei Huang, Feb. 16th, 2020 =============== English Version ================ This blog introduces the motivation and background of one of my previous research articles, which has the following publish information: Huawei Huang, Song Guo, Weifa Liang, Keqiu Li, Baoliu Ye, and Weihua Zhuang, “Near-Optimal Routing Protection for In-Band Software-Defined Heterogeneous Networks”, IEEE Journal on Selected … Continue reading Resilient Routing for the Control-Channel of Software-Defined Networks – A Revisit of a JSAC Article

5G/6G时代的安全分布式机器学习

By Huawei Huang, Dec. 31, 2019       2020年8月11日最新消息:本研究一篇题为《PIRATE: A Blockchain-based Secure Framework of Distributed Machine Learning in 5G Networks》的论文已被 IEEE Network 接收,该期刊是计算机网络与通信领域顶级期刊,发表计算机网络社区的热门研究课题、关键问题以及最新研究进展。IEEE Network的2019年影响因子为 9.590 (2020年最新数据),为中科院一区。 论文简介: 随着AI芯片的制造成本逐渐下降,越来越多的移动设备逐渐具备机器学习的能力。同时,网络连接质量作为分布式机器学习的瓶颈,将会随着5G/6G时代的到来大大地得到提升。为了应对即将到来的5G/6G时代新型分布式机器学习的需求,我们需要一个能支持大规模的分布式机器学习的框架。尤其重要的是,在大规模用户参与的情况下,分布式机器学习的安全问题应该引起足够的重视。       理论上来讲,恶意攻击者可以攻击分布式机器学习的各个环节。针对妨碍训练收敛的任意攻击行为,我们提出了图1所示的 PIRATE:一个基于区块链的安全分布式学习框架。由于区块链技术验证的灵活性,此框架可不限于保护本文中所述的训练收敛性,而是在其他安全保护方面也具有巨大的潜能。基于本框架,更多的保护机制可以被开发出来,如针对参与分布式学习的设备进行隐私保护,针对 Model Poisoning Attack 的保护,为所有参与者提供激励机制等。       如图1所示,PIRATE主要由两部分组成,一是设备可靠性分析,用以分析设备的可靠性,进而决定设备能否能参与学习任务;二是基于多个分片链的安全SGD(Stochastic Gradient Descent)框架。       我们采取了去中心化的 Ring AllReduce 结构(图2)。这种架构可以更好地分担网络压力,并且可以在验证计算结果的同时进行梯度计算。同时,为了让节点在 Ring AllReduce 结构下高效、可验证地沟通,我们运用了基于分片的区块链。其中,我们把所有节点分成多个委员会,每个节点只需要验证自己委员会内的梯度计算。这种分布式验证极大地降低了广播所带来的时延。        经过模拟实验,在5G网络条件、较大训练模型、以及大规模用户参与的条件下, 论文提出的PIRATE框架比同类框架 LearningChain 更节省存储空间,分布式机器学习训练速度方面更加高效。        该项研究的前期工作已经上传到 arXiv。论文一作为本实验室研究生1年级学生周思聪同学,第一篇论文写得很有前瞻性,可圈可点。 论文链接:    … Continue reading 5G/6G时代的安全分布式机器学习

A recent paper on Blockchain has been submitted to arXiv

By Huawei Huang, Dec. 23, 2019 Topic: Consensus of Blockchain Systems 1. Paper Title: PIRATE: A Blockchain-based Secure Framework of Distributed Machine Learning in 5G Networks. Summary: A sharding-based blockchain framework, for byzantine-resilient distributed-learning under the decentralized 5G computing environment. Authors: Sicong Zhou*, Huawei Huang*, Wuhui Chen*, Zibin Zheng*, and Song Guo†, Affiliations: * Sun Yat-sen University and † Hong Kong Polytechnic University.

旧论文整理:对基于低轨卫星的大数据存储的展望

By Huawei Huang, Dec. 17th, 2019 整理论文发现,2018年2月我们有一篇发表在 IEEE Wireless Communications (中科院一区期刊,IF=11.0) 题目为 “Envision of Wireless Big Data Storage for Low-Earth-Orbit Satellite-based Cloud” 的mini综述论文。     [附件下载:IEEE-WCM-2018Huang-Envisioned.pdf ] [ResearchGate page’s URL ]     这篇论文的背景与出发点总结如下:     美国一家初创公司 Cloud Constellation 于2016年推出了 SpaceBelt  计划,主导开发基于低轨道卫星(Low-earth-oribit, LEO)云存储系统。目标是为企业与政府建立一个与地面互联网完全隔离的、运转在低轨道上可保证数据绝对安全的数据中心(暂且称为“空间数据中心”,Space-based Datacenter)。     受以上卫星通讯业界的最新业务所启发,可以看出:在未来几年6G研究被逐渐展开的过程中,基于低轨道卫星的全球互联网将是一个非常关键的方向。目前学术界已经出现了一些研究成果。比如,有些文献(详见论文中 [5-7])提出了应用基于低轨道卫星通讯系统进行数据的传输与转移地面网络的数据流量。然而,不难发现,卫星设备在这些现有研究中充当的角色只是数据中转设备。从本质上看,卫星系统仍然属于地面互联网或者地面核心网络的向空中延伸的“附属物”。     另一方面,经调查发现,有关“空间数据中心”的课题尚且未被学术界提出过。因此,受 SpaceBelt 计划所启发,本论文大胆推测:在未来5年内,关于这个方向的相关研究应该会陆续出现,并将呈现出较快的增长趋势。为了填补学术界对“空间数据中心”研究的空缺,本文主要讨论并总结出一些有价值的科学研究问题与面临的技术挑战。     我们相信,本文将会照亮一点点6G研究的曙光。————————————作者:黄华威

一篇关于NFV的长文正式发表在IEEE TCC

Dec. 10, 2019, by Huawei Huang       很高兴看到我们一篇关于网络功能虚拟化(NFV)的长文正式发表在 IEEE Transactions on Cloud Computing (TCC) 期刊上。文章信息如下: Huawei Huang, Song Guo, Jinsong Wu and Jie Li, “Service Chaining for Hybrid Network Functions”, IEEE Transactions on Cloud Computing (TCC), vol. 7, no. 4, pp. 1082-1094, October-December, 2019 URL: https://ieeexplore.ieee.org/document/7962178 论文下载:附件 [1] TCC-service-chaining.pdf      现今来自终端用户的多种应用所产生的流量在到达数据中心服务器之前,需要经过不同种类的网络功能服务的处理。比如,网络流量需要经过防火墙、深度包检测、负载均衡器、视频编码解码器等网络功能虚拟化节点。这篇论文主要研究了基于混合类型的虚拟化网络功能的“服务链(Service Function Chain)”编排与部署问题,提出了能应对多种网络功能需求的快速服务链编排、具有部署灵活、运营效益最大化特点的解决方案。      IEEE Transactions on Cloud … Continue reading 一篇关于NFV的长文正式发表在IEEE TCC